Loading…

Systematic Geolocation Errors of FengYun-3D MERSI-II

Geolocation accuracy is a critical issue for remote sensing applications. To achieve subpixel accuracy, geolocation errors need to be systematically identified and corrected. In this study, we propose a geometric sensor model for FengYun-3D (FY-3D) MERSI-II, a second-generation visible (VIS)/infrare...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-11
Main Authors: Pan, Hongbo, Cui, Zehua, Hu, Xiuqing, Zhu, Xiaoyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-64d0c8dcb0bbb9f07207c7322960174c5ce4a1193e1217ff6564590ccb6cb4a23
cites cdi_FETCH-LOGICAL-c336t-64d0c8dcb0bbb9f07207c7322960174c5ce4a1193e1217ff6564590ccb6cb4a23
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Pan, Hongbo
Cui, Zehua
Hu, Xiuqing
Zhu, Xiaoyong
description Geolocation accuracy is a critical issue for remote sensing applications. To achieve subpixel accuracy, geolocation errors need to be systematically identified and corrected. In this study, we propose a geometric sensor model for FengYun-3D (FY-3D) MERSI-II, a second-generation visible (VIS)/infrared (IR) spectroradiometer, to generate the geolocation lookup table (GLT). The geometric sensor model retrieves the imaging rays from the focal plane to the K-mirrors, 45° scanning mirrors, the platform, and the earth's surface. After refining the attitude errors with ground control points (GCPs), the rigorous sensor model can achieve subpixel geolocation accuracy. However, significant systematic geolocation errors were identified from the residuals, especially for the area with large view angles. To study the errors of MERSI-II, we proposed a homogenous coordinate in the focal plane. As proven by both theory and experiments, the attitudes were adjusted to a wrong value and introduced systematic errors when there were principal point errors. The pitch angle error of K-mirrors caused the oscillation in the flight direction. The principal distance error introduced line coordinate-related error in the flight direction. Meanwhile, the initial phase angle error between the K-mirror and 45° scanning mirrors caused the line coordinate-related errors in the scanning direction. After correcting all the above-mentioned errors, the systematic geolocation errors of MERSI-II were removed. With 23 independent datasets, the root mean square errors (RMSEs) of 250 m bands were approximately 0.4 pixels, 100 m at nadir.
doi_str_mv 10.1109/TGRS.2022.3156999
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2022_3156999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9729244</ieee_id><sourcerecordid>2648289827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-64d0c8dcb0bbb9f07207c7322960174c5ce4a1193e1217ff6564590ccb6cb4a23</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9AcZLE8-LM_vZPRqE2gRjAnjwtGmXrYFAF3fLgX9vCcTTzOF538k8hDwijBDBvCyL-WLEgLERR6mMMVdkgFLmFJQQ12QAaBRluWG35C6lDQAKiXpAxOKYOr-rurXLCh-2wfVraLNJjCGmLDTZ1Lc_34eW8rfsYzJflLQs78lNU22Tf7jMIfmaTpbjdzr7LMrx64w6zlVHlViBy1euhrquTQOagXaaM2YUoBZOOi8qRMM9MtRNo6QS0oBztXK1qBgfkudz7z6G34NPnd2EQ2z7k5Ypkffv5Ez3FJ4pF0NK0Td2H9e7Kh4tgj3JsSc59iTHXuT0madzZu29_-eNZoYJwf8AxUNdog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648289827</pqid></control><display><type>article</type><title>Systematic Geolocation Errors of FengYun-3D MERSI-II</title><source>IEEE Xplore (Online service)</source><creator>Pan, Hongbo ; Cui, Zehua ; Hu, Xiuqing ; Zhu, Xiaoyong</creator><creatorcontrib>Pan, Hongbo ; Cui, Zehua ; Hu, Xiuqing ; Zhu, Xiaoyong</creatorcontrib><description>Geolocation accuracy is a critical issue for remote sensing applications. To achieve subpixel accuracy, geolocation errors need to be systematically identified and corrected. In this study, we propose a geometric sensor model for FengYun-3D (FY-3D) MERSI-II, a second-generation visible (VIS)/infrared (IR) spectroradiometer, to generate the geolocation lookup table (GLT). The geometric sensor model retrieves the imaging rays from the focal plane to the K-mirrors, 45° scanning mirrors, the platform, and the earth's surface. After refining the attitude errors with ground control points (GCPs), the rigorous sensor model can achieve subpixel geolocation accuracy. However, significant systematic geolocation errors were identified from the residuals, especially for the area with large view angles. To study the errors of MERSI-II, we proposed a homogenous coordinate in the focal plane. As proven by both theory and experiments, the attitudes were adjusted to a wrong value and introduced systematic errors when there were principal point errors. The pitch angle error of K-mirrors caused the oscillation in the flight direction. The principal distance error introduced line coordinate-related error in the flight direction. Meanwhile, the initial phase angle error between the K-mirror and 45° scanning mirrors caused the line coordinate-related errors in the scanning direction. After correcting all the above-mentioned errors, the systematic geolocation errors of MERSI-II were removed. With 23 independent datasets, the root mean square errors (RMSEs) of 250 m bands were approximately 0.4 pixels, 100 m at nadir.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3156999</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Attitudes ; Detectors ; Direction ; Earth ; Earth surface ; Errors ; Flight ; Focal plane ; Geolocation ; Geology ; geometric sensor model ; Identification ; Imaging ; Lookup tables ; medium resolution spectrum imager-II (MERSI-II) ; Mirrors ; Pitch (inclination) ; Pixels ; Principal point ; Remote sensing ; Satellite broadcasting ; Scanning ; Sensors ; Spectroradiometers ; Systematic errors ; Systematics ; Three dimensional models</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-64d0c8dcb0bbb9f07207c7322960174c5ce4a1193e1217ff6564590ccb6cb4a23</citedby><cites>FETCH-LOGICAL-c336t-64d0c8dcb0bbb9f07207c7322960174c5ce4a1193e1217ff6564590ccb6cb4a23</cites><orcidid>0000-0002-8331-2266 ; 0000-0002-3020-8676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9729244$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Pan, Hongbo</creatorcontrib><creatorcontrib>Cui, Zehua</creatorcontrib><creatorcontrib>Hu, Xiuqing</creatorcontrib><creatorcontrib>Zhu, Xiaoyong</creatorcontrib><title>Systematic Geolocation Errors of FengYun-3D MERSI-II</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Geolocation accuracy is a critical issue for remote sensing applications. To achieve subpixel accuracy, geolocation errors need to be systematically identified and corrected. In this study, we propose a geometric sensor model for FengYun-3D (FY-3D) MERSI-II, a second-generation visible (VIS)/infrared (IR) spectroradiometer, to generate the geolocation lookup table (GLT). The geometric sensor model retrieves the imaging rays from the focal plane to the K-mirrors, 45° scanning mirrors, the platform, and the earth's surface. After refining the attitude errors with ground control points (GCPs), the rigorous sensor model can achieve subpixel geolocation accuracy. However, significant systematic geolocation errors were identified from the residuals, especially for the area with large view angles. To study the errors of MERSI-II, we proposed a homogenous coordinate in the focal plane. As proven by both theory and experiments, the attitudes were adjusted to a wrong value and introduced systematic errors when there were principal point errors. The pitch angle error of K-mirrors caused the oscillation in the flight direction. The principal distance error introduced line coordinate-related error in the flight direction. Meanwhile, the initial phase angle error between the K-mirror and 45° scanning mirrors caused the line coordinate-related errors in the scanning direction. After correcting all the above-mentioned errors, the systematic geolocation errors of MERSI-II were removed. With 23 independent datasets, the root mean square errors (RMSEs) of 250 m bands were approximately 0.4 pixels, 100 m at nadir.</description><subject>Accuracy</subject><subject>Attitudes</subject><subject>Detectors</subject><subject>Direction</subject><subject>Earth</subject><subject>Earth surface</subject><subject>Errors</subject><subject>Flight</subject><subject>Focal plane</subject><subject>Geolocation</subject><subject>Geology</subject><subject>geometric sensor model</subject><subject>Identification</subject><subject>Imaging</subject><subject>Lookup tables</subject><subject>medium resolution spectrum imager-II (MERSI-II)</subject><subject>Mirrors</subject><subject>Pitch (inclination)</subject><subject>Pixels</subject><subject>Principal point</subject><subject>Remote sensing</subject><subject>Satellite broadcasting</subject><subject>Scanning</subject><subject>Sensors</subject><subject>Spectroradiometers</subject><subject>Systematic errors</subject><subject>Systematics</subject><subject>Three dimensional models</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kE1PwkAQhjdGExH9AcZLE8-LM_vZPRqE2gRjAnjwtGmXrYFAF3fLgX9vCcTTzOF538k8hDwijBDBvCyL-WLEgLERR6mMMVdkgFLmFJQQ12QAaBRluWG35C6lDQAKiXpAxOKYOr-rurXLCh-2wfVraLNJjCGmLDTZ1Lc_34eW8rfsYzJflLQs78lNU22Tf7jMIfmaTpbjdzr7LMrx64w6zlVHlViBy1euhrquTQOagXaaM2YUoBZOOi8qRMM9MtRNo6QS0oBztXK1qBgfkudz7z6G34NPnd2EQ2z7k5Ypkffv5Ez3FJ4pF0NK0Td2H9e7Kh4tgj3JsSc59iTHXuT0madzZu29_-eNZoYJwf8AxUNdog</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Pan, Hongbo</creator><creator>Cui, Zehua</creator><creator>Hu, Xiuqing</creator><creator>Zhu, Xiaoyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8331-2266</orcidid><orcidid>https://orcid.org/0000-0002-3020-8676</orcidid></search><sort><creationdate>2022</creationdate><title>Systematic Geolocation Errors of FengYun-3D MERSI-II</title><author>Pan, Hongbo ; Cui, Zehua ; Hu, Xiuqing ; Zhu, Xiaoyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-64d0c8dcb0bbb9f07207c7322960174c5ce4a1193e1217ff6564590ccb6cb4a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Attitudes</topic><topic>Detectors</topic><topic>Direction</topic><topic>Earth</topic><topic>Earth surface</topic><topic>Errors</topic><topic>Flight</topic><topic>Focal plane</topic><topic>Geolocation</topic><topic>Geology</topic><topic>geometric sensor model</topic><topic>Identification</topic><topic>Imaging</topic><topic>Lookup tables</topic><topic>medium resolution spectrum imager-II (MERSI-II)</topic><topic>Mirrors</topic><topic>Pitch (inclination)</topic><topic>Pixels</topic><topic>Principal point</topic><topic>Remote sensing</topic><topic>Satellite broadcasting</topic><topic>Scanning</topic><topic>Sensors</topic><topic>Spectroradiometers</topic><topic>Systematic errors</topic><topic>Systematics</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Hongbo</creatorcontrib><creatorcontrib>Cui, Zehua</creatorcontrib><creatorcontrib>Hu, Xiuqing</creatorcontrib><creatorcontrib>Zhu, Xiaoyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Hongbo</au><au>Cui, Zehua</au><au>Hu, Xiuqing</au><au>Zhu, Xiaoyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Geolocation Errors of FengYun-3D MERSI-II</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Geolocation accuracy is a critical issue for remote sensing applications. To achieve subpixel accuracy, geolocation errors need to be systematically identified and corrected. In this study, we propose a geometric sensor model for FengYun-3D (FY-3D) MERSI-II, a second-generation visible (VIS)/infrared (IR) spectroradiometer, to generate the geolocation lookup table (GLT). The geometric sensor model retrieves the imaging rays from the focal plane to the K-mirrors, 45° scanning mirrors, the platform, and the earth's surface. After refining the attitude errors with ground control points (GCPs), the rigorous sensor model can achieve subpixel geolocation accuracy. However, significant systematic geolocation errors were identified from the residuals, especially for the area with large view angles. To study the errors of MERSI-II, we proposed a homogenous coordinate in the focal plane. As proven by both theory and experiments, the attitudes were adjusted to a wrong value and introduced systematic errors when there were principal point errors. The pitch angle error of K-mirrors caused the oscillation in the flight direction. The principal distance error introduced line coordinate-related error in the flight direction. Meanwhile, the initial phase angle error between the K-mirror and 45° scanning mirrors caused the line coordinate-related errors in the scanning direction. After correcting all the above-mentioned errors, the systematic geolocation errors of MERSI-II were removed. With 23 independent datasets, the root mean square errors (RMSEs) of 250 m bands were approximately 0.4 pixels, 100 m at nadir.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3156999</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8331-2266</orcidid><orcidid>https://orcid.org/0000-0002-3020-8676</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-11
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2022_3156999
source IEEE Xplore (Online service)
subjects Accuracy
Attitudes
Detectors
Direction
Earth
Earth surface
Errors
Flight
Focal plane
Geolocation
Geology
geometric sensor model
Identification
Imaging
Lookup tables
medium resolution spectrum imager-II (MERSI-II)
Mirrors
Pitch (inclination)
Pixels
Principal point
Remote sensing
Satellite broadcasting
Scanning
Sensors
Spectroradiometers
Systematic errors
Systematics
Three dimensional models
title Systematic Geolocation Errors of FengYun-3D MERSI-II
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Geolocation%20Errors%20of%20FengYun-3D%20MERSI-II&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Pan,%20Hongbo&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3156999&rft_dat=%3Cproquest_cross%3E2648289827%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-64d0c8dcb0bbb9f07207c7322960174c5ce4a1193e1217ff6564590ccb6cb4a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2648289827&rft_id=info:pmid/&rft_ieee_id=9729244&rfr_iscdi=true