Loading…
Systematic Geolocation Errors of FengYun-3D MERSI-II
Geolocation accuracy is a critical issue for remote sensing applications. To achieve subpixel accuracy, geolocation errors need to be systematically identified and corrected. In this study, we propose a geometric sensor model for FengYun-3D (FY-3D) MERSI-II, a second-generation visible (VIS)/infrare...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-64d0c8dcb0bbb9f07207c7322960174c5ce4a1193e1217ff6564590ccb6cb4a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-64d0c8dcb0bbb9f07207c7322960174c5ce4a1193e1217ff6564590ccb6cb4a23 |
container_end_page | 11 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Pan, Hongbo Cui, Zehua Hu, Xiuqing Zhu, Xiaoyong |
description | Geolocation accuracy is a critical issue for remote sensing applications. To achieve subpixel accuracy, geolocation errors need to be systematically identified and corrected. In this study, we propose a geometric sensor model for FengYun-3D (FY-3D) MERSI-II, a second-generation visible (VIS)/infrared (IR) spectroradiometer, to generate the geolocation lookup table (GLT). The geometric sensor model retrieves the imaging rays from the focal plane to the K-mirrors, 45° scanning mirrors, the platform, and the earth's surface. After refining the attitude errors with ground control points (GCPs), the rigorous sensor model can achieve subpixel geolocation accuracy. However, significant systematic geolocation errors were identified from the residuals, especially for the area with large view angles. To study the errors of MERSI-II, we proposed a homogenous coordinate in the focal plane. As proven by both theory and experiments, the attitudes were adjusted to a wrong value and introduced systematic errors when there were principal point errors. The pitch angle error of K-mirrors caused the oscillation in the flight direction. The principal distance error introduced line coordinate-related error in the flight direction. Meanwhile, the initial phase angle error between the K-mirror and 45° scanning mirrors caused the line coordinate-related errors in the scanning direction. After correcting all the above-mentioned errors, the systematic geolocation errors of MERSI-II were removed. With 23 independent datasets, the root mean square errors (RMSEs) of 250 m bands were approximately 0.4 pixels, 100 m at nadir. |
doi_str_mv | 10.1109/TGRS.2022.3156999 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2022_3156999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9729244</ieee_id><sourcerecordid>2648289827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-64d0c8dcb0bbb9f07207c7322960174c5ce4a1193e1217ff6564590ccb6cb4a23</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9AcZLE8-LM_vZPRqE2gRjAnjwtGmXrYFAF3fLgX9vCcTTzOF538k8hDwijBDBvCyL-WLEgLERR6mMMVdkgFLmFJQQ12QAaBRluWG35C6lDQAKiXpAxOKYOr-rurXLCh-2wfVraLNJjCGmLDTZ1Lc_34eW8rfsYzJflLQs78lNU22Tf7jMIfmaTpbjdzr7LMrx64w6zlVHlViBy1euhrquTQOagXaaM2YUoBZOOi8qRMM9MtRNo6QS0oBztXK1qBgfkudz7z6G34NPnd2EQ2z7k5Ypkffv5Ez3FJ4pF0NK0Td2H9e7Kh4tgj3JsSc59iTHXuT0madzZu29_-eNZoYJwf8AxUNdog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648289827</pqid></control><display><type>article</type><title>Systematic Geolocation Errors of FengYun-3D MERSI-II</title><source>IEEE Xplore (Online service)</source><creator>Pan, Hongbo ; Cui, Zehua ; Hu, Xiuqing ; Zhu, Xiaoyong</creator><creatorcontrib>Pan, Hongbo ; Cui, Zehua ; Hu, Xiuqing ; Zhu, Xiaoyong</creatorcontrib><description>Geolocation accuracy is a critical issue for remote sensing applications. To achieve subpixel accuracy, geolocation errors need to be systematically identified and corrected. In this study, we propose a geometric sensor model for FengYun-3D (FY-3D) MERSI-II, a second-generation visible (VIS)/infrared (IR) spectroradiometer, to generate the geolocation lookup table (GLT). The geometric sensor model retrieves the imaging rays from the focal plane to the K-mirrors, 45° scanning mirrors, the platform, and the earth's surface. After refining the attitude errors with ground control points (GCPs), the rigorous sensor model can achieve subpixel geolocation accuracy. However, significant systematic geolocation errors were identified from the residuals, especially for the area with large view angles. To study the errors of MERSI-II, we proposed a homogenous coordinate in the focal plane. As proven by both theory and experiments, the attitudes were adjusted to a wrong value and introduced systematic errors when there were principal point errors. The pitch angle error of K-mirrors caused the oscillation in the flight direction. The principal distance error introduced line coordinate-related error in the flight direction. Meanwhile, the initial phase angle error between the K-mirror and 45° scanning mirrors caused the line coordinate-related errors in the scanning direction. After correcting all the above-mentioned errors, the systematic geolocation errors of MERSI-II were removed. With 23 independent datasets, the root mean square errors (RMSEs) of 250 m bands were approximately 0.4 pixels, 100 m at nadir.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3156999</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Attitudes ; Detectors ; Direction ; Earth ; Earth surface ; Errors ; Flight ; Focal plane ; Geolocation ; Geology ; geometric sensor model ; Identification ; Imaging ; Lookup tables ; medium resolution spectrum imager-II (MERSI-II) ; Mirrors ; Pitch (inclination) ; Pixels ; Principal point ; Remote sensing ; Satellite broadcasting ; Scanning ; Sensors ; Spectroradiometers ; Systematic errors ; Systematics ; Three dimensional models</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-64d0c8dcb0bbb9f07207c7322960174c5ce4a1193e1217ff6564590ccb6cb4a23</citedby><cites>FETCH-LOGICAL-c336t-64d0c8dcb0bbb9f07207c7322960174c5ce4a1193e1217ff6564590ccb6cb4a23</cites><orcidid>0000-0002-8331-2266 ; 0000-0002-3020-8676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9729244$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Pan, Hongbo</creatorcontrib><creatorcontrib>Cui, Zehua</creatorcontrib><creatorcontrib>Hu, Xiuqing</creatorcontrib><creatorcontrib>Zhu, Xiaoyong</creatorcontrib><title>Systematic Geolocation Errors of FengYun-3D MERSI-II</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Geolocation accuracy is a critical issue for remote sensing applications. To achieve subpixel accuracy, geolocation errors need to be systematically identified and corrected. In this study, we propose a geometric sensor model for FengYun-3D (FY-3D) MERSI-II, a second-generation visible (VIS)/infrared (IR) spectroradiometer, to generate the geolocation lookup table (GLT). The geometric sensor model retrieves the imaging rays from the focal plane to the K-mirrors, 45° scanning mirrors, the platform, and the earth's surface. After refining the attitude errors with ground control points (GCPs), the rigorous sensor model can achieve subpixel geolocation accuracy. However, significant systematic geolocation errors were identified from the residuals, especially for the area with large view angles. To study the errors of MERSI-II, we proposed a homogenous coordinate in the focal plane. As proven by both theory and experiments, the attitudes were adjusted to a wrong value and introduced systematic errors when there were principal point errors. The pitch angle error of K-mirrors caused the oscillation in the flight direction. The principal distance error introduced line coordinate-related error in the flight direction. Meanwhile, the initial phase angle error between the K-mirror and 45° scanning mirrors caused the line coordinate-related errors in the scanning direction. After correcting all the above-mentioned errors, the systematic geolocation errors of MERSI-II were removed. With 23 independent datasets, the root mean square errors (RMSEs) of 250 m bands were approximately 0.4 pixels, 100 m at nadir.</description><subject>Accuracy</subject><subject>Attitudes</subject><subject>Detectors</subject><subject>Direction</subject><subject>Earth</subject><subject>Earth surface</subject><subject>Errors</subject><subject>Flight</subject><subject>Focal plane</subject><subject>Geolocation</subject><subject>Geology</subject><subject>geometric sensor model</subject><subject>Identification</subject><subject>Imaging</subject><subject>Lookup tables</subject><subject>medium resolution spectrum imager-II (MERSI-II)</subject><subject>Mirrors</subject><subject>Pitch (inclination)</subject><subject>Pixels</subject><subject>Principal point</subject><subject>Remote sensing</subject><subject>Satellite broadcasting</subject><subject>Scanning</subject><subject>Sensors</subject><subject>Spectroradiometers</subject><subject>Systematic errors</subject><subject>Systematics</subject><subject>Three dimensional models</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kE1PwkAQhjdGExH9AcZLE8-LM_vZPRqE2gRjAnjwtGmXrYFAF3fLgX9vCcTTzOF538k8hDwijBDBvCyL-WLEgLERR6mMMVdkgFLmFJQQ12QAaBRluWG35C6lDQAKiXpAxOKYOr-rurXLCh-2wfVraLNJjCGmLDTZ1Lc_34eW8rfsYzJflLQs78lNU22Tf7jMIfmaTpbjdzr7LMrx64w6zlVHlViBy1euhrquTQOagXaaM2YUoBZOOi8qRMM9MtRNo6QS0oBztXK1qBgfkudz7z6G34NPnd2EQ2z7k5Ypkffv5Ez3FJ4pF0NK0Td2H9e7Kh4tgj3JsSc59iTHXuT0madzZu29_-eNZoYJwf8AxUNdog</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Pan, Hongbo</creator><creator>Cui, Zehua</creator><creator>Hu, Xiuqing</creator><creator>Zhu, Xiaoyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8331-2266</orcidid><orcidid>https://orcid.org/0000-0002-3020-8676</orcidid></search><sort><creationdate>2022</creationdate><title>Systematic Geolocation Errors of FengYun-3D MERSI-II</title><author>Pan, Hongbo ; Cui, Zehua ; Hu, Xiuqing ; Zhu, Xiaoyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-64d0c8dcb0bbb9f07207c7322960174c5ce4a1193e1217ff6564590ccb6cb4a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Attitudes</topic><topic>Detectors</topic><topic>Direction</topic><topic>Earth</topic><topic>Earth surface</topic><topic>Errors</topic><topic>Flight</topic><topic>Focal plane</topic><topic>Geolocation</topic><topic>Geology</topic><topic>geometric sensor model</topic><topic>Identification</topic><topic>Imaging</topic><topic>Lookup tables</topic><topic>medium resolution spectrum imager-II (MERSI-II)</topic><topic>Mirrors</topic><topic>Pitch (inclination)</topic><topic>Pixels</topic><topic>Principal point</topic><topic>Remote sensing</topic><topic>Satellite broadcasting</topic><topic>Scanning</topic><topic>Sensors</topic><topic>Spectroradiometers</topic><topic>Systematic errors</topic><topic>Systematics</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Hongbo</creatorcontrib><creatorcontrib>Cui, Zehua</creatorcontrib><creatorcontrib>Hu, Xiuqing</creatorcontrib><creatorcontrib>Zhu, Xiaoyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Hongbo</au><au>Cui, Zehua</au><au>Hu, Xiuqing</au><au>Zhu, Xiaoyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Geolocation Errors of FengYun-3D MERSI-II</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Geolocation accuracy is a critical issue for remote sensing applications. To achieve subpixel accuracy, geolocation errors need to be systematically identified and corrected. In this study, we propose a geometric sensor model for FengYun-3D (FY-3D) MERSI-II, a second-generation visible (VIS)/infrared (IR) spectroradiometer, to generate the geolocation lookup table (GLT). The geometric sensor model retrieves the imaging rays from the focal plane to the K-mirrors, 45° scanning mirrors, the platform, and the earth's surface. After refining the attitude errors with ground control points (GCPs), the rigorous sensor model can achieve subpixel geolocation accuracy. However, significant systematic geolocation errors were identified from the residuals, especially for the area with large view angles. To study the errors of MERSI-II, we proposed a homogenous coordinate in the focal plane. As proven by both theory and experiments, the attitudes were adjusted to a wrong value and introduced systematic errors when there were principal point errors. The pitch angle error of K-mirrors caused the oscillation in the flight direction. The principal distance error introduced line coordinate-related error in the flight direction. Meanwhile, the initial phase angle error between the K-mirror and 45° scanning mirrors caused the line coordinate-related errors in the scanning direction. After correcting all the above-mentioned errors, the systematic geolocation errors of MERSI-II were removed. With 23 independent datasets, the root mean square errors (RMSEs) of 250 m bands were approximately 0.4 pixels, 100 m at nadir.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3156999</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8331-2266</orcidid><orcidid>https://orcid.org/0000-0002-3020-8676</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-11 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2022_3156999 |
source | IEEE Xplore (Online service) |
subjects | Accuracy Attitudes Detectors Direction Earth Earth surface Errors Flight Focal plane Geolocation Geology geometric sensor model Identification Imaging Lookup tables medium resolution spectrum imager-II (MERSI-II) Mirrors Pitch (inclination) Pixels Principal point Remote sensing Satellite broadcasting Scanning Sensors Spectroradiometers Systematic errors Systematics Three dimensional models |
title | Systematic Geolocation Errors of FengYun-3D MERSI-II |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Geolocation%20Errors%20of%20FengYun-3D%20MERSI-II&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Pan,%20Hongbo&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3156999&rft_dat=%3Cproquest_cross%3E2648289827%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-64d0c8dcb0bbb9f07207c7322960174c5ce4a1193e1217ff6564590ccb6cb4a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2648289827&rft_id=info:pmid/&rft_ieee_id=9729244&rfr_iscdi=true |