Loading…
Riparian Zone DEM Generation From Time-Series Sentinel-1 and Corresponding Water Level: A Novel Waterline Method
Topography data are essential for land management, hydrology, and earth science applications. The topography in a riparian zone varies with time. Available global digital elevation models (GDEMs) do not satisfy the hydrological and environmental modeling requirements for riparian zones. In this stud...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-10 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Topography data are essential for land management, hydrology, and earth science applications. The topography in a riparian zone varies with time. Available global digital elevation models (GDEMs) do not satisfy the hydrological and environmental modeling requirements for riparian zones. In this study, a novel waterline method was proposed to acquire the digital elevation model (DEM) of riparian zones. Synthetic aperture radar (SAR) images are used to extract waterlines and corresponding water level is applied to acquire the elevation. The uneven water surfaces are considered to acquire the elevation of waterlines and Shuttle Radar Topography Mission (SRTM) DEM is used to interpolate the elevation of pixels without waterlines. The proposed method is applied in the riparian zone of Three Gorges Reservoir and Dongting Lake to test its feasibility. More than 80 Sentinel-1 SAR images at different water levels within three years are used to detect waterlines. Based on corresponding water level of hydrological stations, the elevation of waterlines are acquired via inverse distance weighting method. The distance layer and slope derived from the original SRTM DEM are used to interpolate the elevation of pixels between waterlines. The DEM generated by the proposed method is compared against the DEM derived in 2017, SRTM DEM, the DEM which does not include the uneven effects, and Ice, Cloud and land Elevation Satellite -2 (ICESat-2) ATL08. The good performance of the proposed method implies its high efficiency in revealing riparian zone topography. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2022.3170342 |