Loading…

A Performance Characteristic for Net Light Collection in Hyperspectral and Conventional Cameras: A

The signal-to-noise ratio of modern cameras under normal operating conditions tends to be limited by "photon noise" originating from the random arrival of photons. For best signal-to-noise ratio, it is desirable to collect as much light as possible, and to avoid losses internally in the ca...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-15
Main Author: Skauli, Torbjorn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c312t-9699a917517542b94eaa92b50395b00c456b427b03b8fc864d6f2ee95f9fb45c3
container_end_page 15
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Skauli, Torbjorn
description The signal-to-noise ratio of modern cameras under normal operating conditions tends to be limited by "photon noise" originating from the random arrival of photons. For best signal-to-noise ratio, it is desirable to collect as much light as possible, and to avoid losses internally in the camera. There is currently no widely accepted metric for the resulting net light collection, which depends on many aspects of camera design. The IEEE Standards Association P4001 group is developing a standard for hyperspectral imaging, including ways to fully specify camera performance in an efficient way. Motivated by P4001 requirements, this work proposes to specify the net light collection in a single quantity, denoted A^{*} , essentially defined as the product of nominal geometrical étendue, optics transmission, and detector quantum efficiency. It is shown how A^{*} can be physically interpreted as the detector pixel area of an equivalent lossless camera whose exit pupil subtends 1sr. This article discusses how this quantity can be used as a figure of merit applying to hyperspectral cameras as well as to conventional multispectral and broadband cameras and other sensing systems employing imaging optics.
doi_str_mv 10.1109/TGRS.2022.3228071
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2022_3228071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9978932</ieee_id><sourcerecordid>2758723248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-9699a917517542b94eaa92b50395b00c456b427b03b8fc864d6f2ee95f9fb45c3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHww4HNncpu0iW-j6CYMFZ3PIc1uXcfWzqQT9u9Nnfp04dzvHA6HkEvORpwzfTufvL6NgAGMUgDFcn5EBlxKlbBMiGMyYFxnCSgNp-QshBVjXEieD0g5pi_oq9ZvbOOQFkvrrevQ16GrHY06fcKOzuqPZUeLdr1G19VtQ-uGTvdb9GEbBW_X1DaL-G--sOn_USjsBr0Nd3R8Tk4quw548XuH5P3hfl5Mk9nz5LEYzxKXcugSnWltNc9jLSmg1AKt1VBKlmpZMuaEzEoBecnSUlVOZWKRVYCoZaWrUkiXDsn1Idf9tG9M03prOFMSjI7BWSRuDsTWt587DJ1ZtTsf2wYDuVQ5pCBUpPhfThuCx8psfb2xfh-zTD-26cc2_djmd-zouTp4akT857XOlU4h_QaQq3j8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758723248</pqid></control><display><type>article</type><title>A Performance Characteristic for Net Light Collection in Hyperspectral and Conventional Cameras: A</title><source>NORA - Norwegian Open Research Archives</source><source>IEEE Electronic Library (IEL) Journals</source><creator>Skauli, Torbjorn</creator><creatorcontrib>Skauli, Torbjorn</creatorcontrib><description><![CDATA[The signal-to-noise ratio of modern cameras under normal operating conditions tends to be limited by "photon noise" originating from the random arrival of photons. For best signal-to-noise ratio, it is desirable to collect as much light as possible, and to avoid losses internally in the camera. There is currently no widely accepted metric for the resulting net light collection, which depends on many aspects of camera design. The IEEE Standards Association P4001 group is developing a standard for hyperspectral imaging, including ways to fully specify camera performance in an efficient way. Motivated by P4001 requirements, this work proposes to specify the net light collection in a single quantity, denoted <inline-formula> <tex-math notation="LaTeX">A^{*} </tex-math></inline-formula>, essentially defined as the product of nominal geometrical étendue, optics transmission, and detector quantum efficiency. It is shown how <inline-formula> <tex-math notation="LaTeX">A^{*} </tex-math></inline-formula> can be physically interpreted as the detector pixel area of an equivalent lossless camera whose exit pupil subtends 1sr. This article discusses how this quantity can be used as a figure of merit applying to hyperspectral cameras as well as to conventional multispectral and broadband cameras and other sensing systems employing imaging optics.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3228071</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Broadband ; Camera ; Cameras ; Collection ; Design standards ; Detectors ; F-number ; Figure of merit ; hyperspectral ; Hyperspectral imaging ; imaging ; Imaging techniques ; Lenses ; Light ; Optics ; photography ; Photonics ; Photons ; Quantum efficiency ; Signal to noise ratio ; specification ; spectroscopy ; T-number ; throughput ; étendue</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-9699a917517542b94eaa92b50395b00c456b427b03b8fc864d6f2ee95f9fb45c3</cites><orcidid>0000-0003-2360-2621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9978932$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,4023,26566,27922,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Skauli, Torbjorn</creatorcontrib><title>A Performance Characteristic for Net Light Collection in Hyperspectral and Conventional Cameras: A</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[The signal-to-noise ratio of modern cameras under normal operating conditions tends to be limited by "photon noise" originating from the random arrival of photons. For best signal-to-noise ratio, it is desirable to collect as much light as possible, and to avoid losses internally in the camera. There is currently no widely accepted metric for the resulting net light collection, which depends on many aspects of camera design. The IEEE Standards Association P4001 group is developing a standard for hyperspectral imaging, including ways to fully specify camera performance in an efficient way. Motivated by P4001 requirements, this work proposes to specify the net light collection in a single quantity, denoted <inline-formula> <tex-math notation="LaTeX">A^{*} </tex-math></inline-formula>, essentially defined as the product of nominal geometrical étendue, optics transmission, and detector quantum efficiency. It is shown how <inline-formula> <tex-math notation="LaTeX">A^{*} </tex-math></inline-formula> can be physically interpreted as the detector pixel area of an equivalent lossless camera whose exit pupil subtends 1sr. This article discusses how this quantity can be used as a figure of merit applying to hyperspectral cameras as well as to conventional multispectral and broadband cameras and other sensing systems employing imaging optics.]]></description><subject>Broadband</subject><subject>Camera</subject><subject>Cameras</subject><subject>Collection</subject><subject>Design standards</subject><subject>Detectors</subject><subject>F-number</subject><subject>Figure of merit</subject><subject>hyperspectral</subject><subject>Hyperspectral imaging</subject><subject>imaging</subject><subject>Imaging techniques</subject><subject>Lenses</subject><subject>Light</subject><subject>Optics</subject><subject>photography</subject><subject>Photonics</subject><subject>Photons</subject><subject>Quantum efficiency</subject><subject>Signal to noise ratio</subject><subject>specification</subject><subject>spectroscopy</subject><subject>T-number</subject><subject>throughput</subject><subject>étendue</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>3HK</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHww4HNncpu0iW-j6CYMFZ3PIc1uXcfWzqQT9u9Nnfp04dzvHA6HkEvORpwzfTufvL6NgAGMUgDFcn5EBlxKlbBMiGMyYFxnCSgNp-QshBVjXEieD0g5pi_oq9ZvbOOQFkvrrevQ16GrHY06fcKOzuqPZUeLdr1G19VtQ-uGTvdb9GEbBW_X1DaL-G--sOn_USjsBr0Nd3R8Tk4quw548XuH5P3hfl5Mk9nz5LEYzxKXcugSnWltNc9jLSmg1AKt1VBKlmpZMuaEzEoBecnSUlVOZWKRVYCoZaWrUkiXDsn1Idf9tG9M03prOFMSjI7BWSRuDsTWt587DJ1ZtTsf2wYDuVQ5pCBUpPhfThuCx8psfb2xfh-zTD-26cc2_djmd-zouTp4akT857XOlU4h_QaQq3j8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Skauli, Torbjorn</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE Geoscience and Remote Sensing Society</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0003-2360-2621</orcidid></search><sort><creationdate>2022</creationdate><title>A Performance Characteristic for Net Light Collection in Hyperspectral and Conventional Cameras: A</title><author>Skauli, Torbjorn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-9699a917517542b94eaa92b50395b00c456b427b03b8fc864d6f2ee95f9fb45c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Broadband</topic><topic>Camera</topic><topic>Cameras</topic><topic>Collection</topic><topic>Design standards</topic><topic>Detectors</topic><topic>F-number</topic><topic>Figure of merit</topic><topic>hyperspectral</topic><topic>Hyperspectral imaging</topic><topic>imaging</topic><topic>Imaging techniques</topic><topic>Lenses</topic><topic>Light</topic><topic>Optics</topic><topic>photography</topic><topic>Photonics</topic><topic>Photons</topic><topic>Quantum efficiency</topic><topic>Signal to noise ratio</topic><topic>specification</topic><topic>spectroscopy</topic><topic>T-number</topic><topic>throughput</topic><topic>étendue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skauli, Torbjorn</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skauli, Torbjorn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Performance Characteristic for Net Light Collection in Hyperspectral and Conventional Cameras: A</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[The signal-to-noise ratio of modern cameras under normal operating conditions tends to be limited by "photon noise" originating from the random arrival of photons. For best signal-to-noise ratio, it is desirable to collect as much light as possible, and to avoid losses internally in the camera. There is currently no widely accepted metric for the resulting net light collection, which depends on many aspects of camera design. The IEEE Standards Association P4001 group is developing a standard for hyperspectral imaging, including ways to fully specify camera performance in an efficient way. Motivated by P4001 requirements, this work proposes to specify the net light collection in a single quantity, denoted <inline-formula> <tex-math notation="LaTeX">A^{*} </tex-math></inline-formula>, essentially defined as the product of nominal geometrical étendue, optics transmission, and detector quantum efficiency. It is shown how <inline-formula> <tex-math notation="LaTeX">A^{*} </tex-math></inline-formula> can be physically interpreted as the detector pixel area of an equivalent lossless camera whose exit pupil subtends 1sr. This article discusses how this quantity can be used as a figure of merit applying to hyperspectral cameras as well as to conventional multispectral and broadband cameras and other sensing systems employing imaging optics.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3228071</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2360-2621</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-15
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2022_3228071
source NORA - Norwegian Open Research Archives; IEEE Electronic Library (IEL) Journals
subjects Broadband
Camera
Cameras
Collection
Design standards
Detectors
F-number
Figure of merit
hyperspectral
Hyperspectral imaging
imaging
Imaging techniques
Lenses
Light
Optics
photography
Photonics
Photons
Quantum efficiency
Signal to noise ratio
specification
spectroscopy
T-number
throughput
étendue
title A Performance Characteristic for Net Light Collection in Hyperspectral and Conventional Cameras: A
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A13%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Performance%20Characteristic%20for%20Net%20Light%20Collection%20in%20Hyperspectral%20and%20Conventional%20Cameras:%20A&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Skauli,%20Torbjorn&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3228071&rft_dat=%3Cproquest_cross%3E2758723248%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-9699a917517542b94eaa92b50395b00c456b427b03b8fc864d6f2ee95f9fb45c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2758723248&rft_id=info:pmid/&rft_ieee_id=9978932&rfr_iscdi=true