Loading…

Deep Learning for Subtle Volcanic Deformation Detection With InSAR Data in Central Volcanic Zone

Subtle volcanic deformations point to volcanic activities, and monitoring them helps predict eruptions. Today, it is possible to remotely detect volcanic deformation in mm/year scale thanks to advances in interferometric synthetic aperture radar (InSAR). This article proposes a framework based on a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-20
Main Authors: Beker, Teo, Ansari, Homa, Montazeri, Sina, Song, Qian, Zhu, Xiao Xiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Subtle volcanic deformations point to volcanic activities, and monitoring them helps predict eruptions. Today, it is possible to remotely detect volcanic deformation in mm/year scale thanks to advances in interferometric synthetic aperture radar (InSAR). This article proposes a framework based on a deep learning model to automatically discriminate subtle volcanic deformations from other deformation types in five-year-long InSAR stacks. Models are trained on a synthetic training set. To better understand and improve the models, explainable artificial intelligence (AI) analyses are performed. In initial models, Gradient-weighted Class Activation Mapping (Grad-CAM) linked new-found patterns of slope processes and salt lake deformations to false-positive detections. The models are then improved by fine-tuning (FT) with a hybrid synthetic-real data, and additional performance is extracted by low-pass spatial filtering (LSF) of the real test set. The t-distributed stochastic neighbor embedding (t-SNE) latent feature visualization confirmed the similarity and shortcomings of the FT set, highlighting the problem of elevation components in residual tropospheric noise. After fine-tuning, all the volcanic deformations are detected, including the smallest one, Lazufre, deforming 5 mm/year. The first time confirmed deformation of Cerro El Condor is observed, deforming 9.9-17.5 mm/year. Finally, sensitivity analysis uncovered the model's minimal detectable deformation of 2 mm/year.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2023.3318469