Loading…
SATURN: A Double-Recursive Deconvolution Algorithm for Suppressing Sidelobe Effects in Non-Nyquist SAR and MIMO Imaging Radars
The angular resolution of an imaging radar system is limited by the aperture size and its associated cost and complexity. Relaxing the \lambda /2 element spacing condition for large arrays introduces sidelobe and grating lobe effects that severely degrade the image quality. In certain imaging appl...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-7cc2aa1cfd949b3d0f038255c4cf9e535da6ab6f09a738d5f1cbc66e9604c10d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-7cc2aa1cfd949b3d0f038255c4cf9e535da6ab6f09a738d5f1cbc66e9604c10d3 |
container_end_page | 12 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Muppala, Aditya Varma Sarabandi, Kamal |
description | The angular resolution of an imaging radar system is limited by the aperture size and its associated cost and complexity. Relaxing the \lambda /2 element spacing condition for large arrays introduces sidelobe and grating lobe effects that severely degrade the image quality. In certain imaging applications, such as automotive radars, the targets are sparsely located and the imaging domain can be approximated as a collection of point scatterers. In such cases, it is possible to "deconvolve" these sidelobe effects to recover a clean image. In this article, a double-recursive deconvolution algorithm titled Sparse Array Target-Segregation Using Recursive Nulling (SATURN) is proposed. It differs from existing CLEAN deconvolution algorithms in two steps: target response estimation and multiple target decorrelation. The target response is estimated using a Sweep and Extinguish step that removes the reliance on the complex image phase. Correlation between targets is suppressed using a Recursive Nulling step that prevents the breakup of point targets. The algorithm is applied to synthetic aperture radars (SARs) and multiple-input multiple-output (MIMO) radars in sparse 3-D imaging scenarios with canonical targets and real-world targets. Dynamic range improvement of 25 dB and thinning factors of over 200 are experimentally demonstrated using a 31-element circular array of X-band U-slot patch antennas with an array diameter of 30\lambda . |
doi_str_mv | 10.1109/TGRS.2023.3328841 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2023_3328841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10302318</ieee_id><sourcerecordid>2889728855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-7cc2aa1cfd949b3d0f038255c4cf9e535da6ab6f09a738d5f1cbc66e9604c10d3</originalsourceid><addsrcrecordid>eNpNkM9rwjAUgMPYYM7tDxjsENi5LmmattmtqHOCP6DVc0nTxEVqo0kreNnfvhY97PLe5fvegw-AV4xGGCP2sZml2chHPhkR4sdxgO_AAFMaeygMgnswQJiFnh8z_xE8ObdHCAcURwPwmyWbbbr6hAmcmLaopJdK0VqnzxJOpDD12VRto00Nk2pnrG5-DlAZC7P2eLTSOV3vYKZLWZlCwqlSUjQO6hquTO2tLqdWuwZmSQp5XcLlfLmG8wPf9VLKS27dM3hQvHLy5baHYPs13Yy_vcV6Nh8nC0_4LGi8SAifcyxUyQJWkBIpRGKfUhEIxSQltOQhL0KFGI9IXFKFRSHCULIQBQKjkgzB-_Xu0ZpTK12T701r6-5l3tViUTco7Sh8pYQ1zlmp8qPVB24vOUZ5nznvM-d95vyWuXPero6WUv7jSQfhmPwBThp5ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889728855</pqid></control><display><type>article</type><title>SATURN: A Double-Recursive Deconvolution Algorithm for Suppressing Sidelobe Effects in Non-Nyquist SAR and MIMO Imaging Radars</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Muppala, Aditya Varma ; Sarabandi, Kamal</creator><creatorcontrib>Muppala, Aditya Varma ; Sarabandi, Kamal</creatorcontrib><description><![CDATA[The angular resolution of an imaging radar system is limited by the aperture size and its associated cost and complexity. Relaxing the <inline-formula> <tex-math notation="LaTeX">\lambda /2 </tex-math></inline-formula> element spacing condition for large arrays introduces sidelobe and grating lobe effects that severely degrade the image quality. In certain imaging applications, such as automotive radars, the targets are sparsely located and the imaging domain can be approximated as a collection of point scatterers. In such cases, it is possible to "deconvolve" these sidelobe effects to recover a clean image. In this article, a double-recursive deconvolution algorithm titled Sparse Array Target-Segregation Using Recursive Nulling (SATURN) is proposed. It differs from existing CLEAN deconvolution algorithms in two steps: target response estimation and multiple target decorrelation. The target response is estimated using a Sweep and Extinguish step that removes the reliance on the complex image phase. Correlation between targets is suppressed using a Recursive Nulling step that prevents the breakup of point targets. The algorithm is applied to synthetic aperture radars (SARs) and multiple-input multiple-output (MIMO) radars in sparse 3-D imaging scenarios with canonical targets and real-world targets. Dynamic range improvement of 25 dB and thinning factors of over 200 are experimentally demonstrated using a 31-element circular array of X-band U-slot patch antennas with an array diameter of <inline-formula> <tex-math notation="LaTeX">30\lambda </tex-math></inline-formula>.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3328841</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Angular resolution ; Antenna arrays ; Automotive radar ; Automotive radars ; CLEAN deconvolution ; Complexity ; Deconvolution ; Image degradation ; Image quality ; Imaging ; Imaging radar ; imaging radars ; Imaging techniques ; Laser radar ; MIMO communication ; multiple-input multiple-output (MIMO) radars ; Patch antennas ; Radar ; Radar equipment ; Radar imaging ; SAR (radar) ; Segregation ; Sidelobe reduction ; sidelobe suppression ; Sidelobes ; sparse arrays ; Superhigh frequencies ; Synthetic aperture radar ; synthetic aperture radars (SARs) ; thinned arrays ; Transmitters</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-7cc2aa1cfd949b3d0f038255c4cf9e535da6ab6f09a738d5f1cbc66e9604c10d3</citedby><cites>FETCH-LOGICAL-c294t-7cc2aa1cfd949b3d0f038255c4cf9e535da6ab6f09a738d5f1cbc66e9604c10d3</cites><orcidid>0000-0003-2716-4622 ; 0000-0002-8989-2628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10302318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Muppala, Aditya Varma</creatorcontrib><creatorcontrib>Sarabandi, Kamal</creatorcontrib><title>SATURN: A Double-Recursive Deconvolution Algorithm for Suppressing Sidelobe Effects in Non-Nyquist SAR and MIMO Imaging Radars</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[The angular resolution of an imaging radar system is limited by the aperture size and its associated cost and complexity. Relaxing the <inline-formula> <tex-math notation="LaTeX">\lambda /2 </tex-math></inline-formula> element spacing condition for large arrays introduces sidelobe and grating lobe effects that severely degrade the image quality. In certain imaging applications, such as automotive radars, the targets are sparsely located and the imaging domain can be approximated as a collection of point scatterers. In such cases, it is possible to "deconvolve" these sidelobe effects to recover a clean image. In this article, a double-recursive deconvolution algorithm titled Sparse Array Target-Segregation Using Recursive Nulling (SATURN) is proposed. It differs from existing CLEAN deconvolution algorithms in two steps: target response estimation and multiple target decorrelation. The target response is estimated using a Sweep and Extinguish step that removes the reliance on the complex image phase. Correlation between targets is suppressed using a Recursive Nulling step that prevents the breakup of point targets. The algorithm is applied to synthetic aperture radars (SARs) and multiple-input multiple-output (MIMO) radars in sparse 3-D imaging scenarios with canonical targets and real-world targets. Dynamic range improvement of 25 dB and thinning factors of over 200 are experimentally demonstrated using a 31-element circular array of X-band U-slot patch antennas with an array diameter of <inline-formula> <tex-math notation="LaTeX">30\lambda </tex-math></inline-formula>.]]></description><subject>Algorithms</subject><subject>Angular resolution</subject><subject>Antenna arrays</subject><subject>Automotive radar</subject><subject>Automotive radars</subject><subject>CLEAN deconvolution</subject><subject>Complexity</subject><subject>Deconvolution</subject><subject>Image degradation</subject><subject>Image quality</subject><subject>Imaging</subject><subject>Imaging radar</subject><subject>imaging radars</subject><subject>Imaging techniques</subject><subject>Laser radar</subject><subject>MIMO communication</subject><subject>multiple-input multiple-output (MIMO) radars</subject><subject>Patch antennas</subject><subject>Radar</subject><subject>Radar equipment</subject><subject>Radar imaging</subject><subject>SAR (radar)</subject><subject>Segregation</subject><subject>Sidelobe reduction</subject><subject>sidelobe suppression</subject><subject>Sidelobes</subject><subject>sparse arrays</subject><subject>Superhigh frequencies</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radars (SARs)</subject><subject>thinned arrays</subject><subject>Transmitters</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM9rwjAUgMPYYM7tDxjsENi5LmmattmtqHOCP6DVc0nTxEVqo0kreNnfvhY97PLe5fvegw-AV4xGGCP2sZml2chHPhkR4sdxgO_AAFMaeygMgnswQJiFnh8z_xE8ObdHCAcURwPwmyWbbbr6hAmcmLaopJdK0VqnzxJOpDD12VRto00Nk2pnrG5-DlAZC7P2eLTSOV3vYKZLWZlCwqlSUjQO6hquTO2tLqdWuwZmSQp5XcLlfLmG8wPf9VLKS27dM3hQvHLy5baHYPs13Yy_vcV6Nh8nC0_4LGi8SAifcyxUyQJWkBIpRGKfUhEIxSQltOQhL0KFGI9IXFKFRSHCULIQBQKjkgzB-_Xu0ZpTK12T701r6-5l3tViUTco7Sh8pYQ1zlmp8qPVB24vOUZ5nznvM-d95vyWuXPero6WUv7jSQfhmPwBThp5ug</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Muppala, Aditya Varma</creator><creator>Sarabandi, Kamal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2716-4622</orcidid><orcidid>https://orcid.org/0000-0002-8989-2628</orcidid></search><sort><creationdate>2023</creationdate><title>SATURN: A Double-Recursive Deconvolution Algorithm for Suppressing Sidelobe Effects in Non-Nyquist SAR and MIMO Imaging Radars</title><author>Muppala, Aditya Varma ; Sarabandi, Kamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-7cc2aa1cfd949b3d0f038255c4cf9e535da6ab6f09a738d5f1cbc66e9604c10d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Angular resolution</topic><topic>Antenna arrays</topic><topic>Automotive radar</topic><topic>Automotive radars</topic><topic>CLEAN deconvolution</topic><topic>Complexity</topic><topic>Deconvolution</topic><topic>Image degradation</topic><topic>Image quality</topic><topic>Imaging</topic><topic>Imaging radar</topic><topic>imaging radars</topic><topic>Imaging techniques</topic><topic>Laser radar</topic><topic>MIMO communication</topic><topic>multiple-input multiple-output (MIMO) radars</topic><topic>Patch antennas</topic><topic>Radar</topic><topic>Radar equipment</topic><topic>Radar imaging</topic><topic>SAR (radar)</topic><topic>Segregation</topic><topic>Sidelobe reduction</topic><topic>sidelobe suppression</topic><topic>Sidelobes</topic><topic>sparse arrays</topic><topic>Superhigh frequencies</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radars (SARs)</topic><topic>thinned arrays</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muppala, Aditya Varma</creatorcontrib><creatorcontrib>Sarabandi, Kamal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muppala, Aditya Varma</au><au>Sarabandi, Kamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SATURN: A Double-Recursive Deconvolution Algorithm for Suppressing Sidelobe Effects in Non-Nyquist SAR and MIMO Imaging Radars</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[The angular resolution of an imaging radar system is limited by the aperture size and its associated cost and complexity. Relaxing the <inline-formula> <tex-math notation="LaTeX">\lambda /2 </tex-math></inline-formula> element spacing condition for large arrays introduces sidelobe and grating lobe effects that severely degrade the image quality. In certain imaging applications, such as automotive radars, the targets are sparsely located and the imaging domain can be approximated as a collection of point scatterers. In such cases, it is possible to "deconvolve" these sidelobe effects to recover a clean image. In this article, a double-recursive deconvolution algorithm titled Sparse Array Target-Segregation Using Recursive Nulling (SATURN) is proposed. It differs from existing CLEAN deconvolution algorithms in two steps: target response estimation and multiple target decorrelation. The target response is estimated using a Sweep and Extinguish step that removes the reliance on the complex image phase. Correlation between targets is suppressed using a Recursive Nulling step that prevents the breakup of point targets. The algorithm is applied to synthetic aperture radars (SARs) and multiple-input multiple-output (MIMO) radars in sparse 3-D imaging scenarios with canonical targets and real-world targets. Dynamic range improvement of 25 dB and thinning factors of over 200 are experimentally demonstrated using a 31-element circular array of X-band U-slot patch antennas with an array diameter of <inline-formula> <tex-math notation="LaTeX">30\lambda </tex-math></inline-formula>.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3328841</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2716-4622</orcidid><orcidid>https://orcid.org/0000-0002-8989-2628</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-12 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2023_3328841 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Angular resolution Antenna arrays Automotive radar Automotive radars CLEAN deconvolution Complexity Deconvolution Image degradation Image quality Imaging Imaging radar imaging radars Imaging techniques Laser radar MIMO communication multiple-input multiple-output (MIMO) radars Patch antennas Radar Radar equipment Radar imaging SAR (radar) Segregation Sidelobe reduction sidelobe suppression Sidelobes sparse arrays Superhigh frequencies Synthetic aperture radar synthetic aperture radars (SARs) thinned arrays Transmitters |
title | SATURN: A Double-Recursive Deconvolution Algorithm for Suppressing Sidelobe Effects in Non-Nyquist SAR and MIMO Imaging Radars |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SATURN:%20A%20Double-Recursive%20Deconvolution%20Algorithm%20for%20Suppressing%20Sidelobe%20Effects%20in%20Non-Nyquist%20SAR%20and%20MIMO%20Imaging%20Radars&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Muppala,%20Aditya%20Varma&rft.date=2023&rft.volume=61&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3328841&rft_dat=%3Cproquest_cross%3E2889728855%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-7cc2aa1cfd949b3d0f038255c4cf9e535da6ab6f09a738d5f1cbc66e9604c10d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889728855&rft_id=info:pmid/&rft_ieee_id=10302318&rfr_iscdi=true |