Loading…

SATURN: A Double-Recursive Deconvolution Algorithm for Suppressing Sidelobe Effects in Non-Nyquist SAR and MIMO Imaging Radars

The angular resolution of an imaging radar system is limited by the aperture size and its associated cost and complexity. Relaxing the \lambda /2 element spacing condition for large arrays introduces sidelobe and grating lobe effects that severely degrade the image quality. In certain imaging appl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-12
Main Authors: Muppala, Aditya Varma, Sarabandi, Kamal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-7cc2aa1cfd949b3d0f038255c4cf9e535da6ab6f09a738d5f1cbc66e9604c10d3
cites cdi_FETCH-LOGICAL-c294t-7cc2aa1cfd949b3d0f038255c4cf9e535da6ab6f09a738d5f1cbc66e9604c10d3
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Muppala, Aditya Varma
Sarabandi, Kamal
description The angular resolution of an imaging radar system is limited by the aperture size and its associated cost and complexity. Relaxing the \lambda /2 element spacing condition for large arrays introduces sidelobe and grating lobe effects that severely degrade the image quality. In certain imaging applications, such as automotive radars, the targets are sparsely located and the imaging domain can be approximated as a collection of point scatterers. In such cases, it is possible to "deconvolve" these sidelobe effects to recover a clean image. In this article, a double-recursive deconvolution algorithm titled Sparse Array Target-Segregation Using Recursive Nulling (SATURN) is proposed. It differs from existing CLEAN deconvolution algorithms in two steps: target response estimation and multiple target decorrelation. The target response is estimated using a Sweep and Extinguish step that removes the reliance on the complex image phase. Correlation between targets is suppressed using a Recursive Nulling step that prevents the breakup of point targets. The algorithm is applied to synthetic aperture radars (SARs) and multiple-input multiple-output (MIMO) radars in sparse 3-D imaging scenarios with canonical targets and real-world targets. Dynamic range improvement of 25 dB and thinning factors of over 200 are experimentally demonstrated using a 31-element circular array of X-band U-slot patch antennas with an array diameter of 30\lambda .
doi_str_mv 10.1109/TGRS.2023.3328841
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2023_3328841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10302318</ieee_id><sourcerecordid>2889728855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-7cc2aa1cfd949b3d0f038255c4cf9e535da6ab6f09a738d5f1cbc66e9604c10d3</originalsourceid><addsrcrecordid>eNpNkM9rwjAUgMPYYM7tDxjsENi5LmmattmtqHOCP6DVc0nTxEVqo0kreNnfvhY97PLe5fvegw-AV4xGGCP2sZml2chHPhkR4sdxgO_AAFMaeygMgnswQJiFnh8z_xE8ObdHCAcURwPwmyWbbbr6hAmcmLaopJdK0VqnzxJOpDD12VRto00Nk2pnrG5-DlAZC7P2eLTSOV3vYKZLWZlCwqlSUjQO6hquTO2tLqdWuwZmSQp5XcLlfLmG8wPf9VLKS27dM3hQvHLy5baHYPs13Yy_vcV6Nh8nC0_4LGi8SAifcyxUyQJWkBIpRGKfUhEIxSQltOQhL0KFGI9IXFKFRSHCULIQBQKjkgzB-_Xu0ZpTK12T701r6-5l3tViUTco7Sh8pYQ1zlmp8qPVB24vOUZ5nznvM-d95vyWuXPero6WUv7jSQfhmPwBThp5ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889728855</pqid></control><display><type>article</type><title>SATURN: A Double-Recursive Deconvolution Algorithm for Suppressing Sidelobe Effects in Non-Nyquist SAR and MIMO Imaging Radars</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Muppala, Aditya Varma ; Sarabandi, Kamal</creator><creatorcontrib>Muppala, Aditya Varma ; Sarabandi, Kamal</creatorcontrib><description><![CDATA[The angular resolution of an imaging radar system is limited by the aperture size and its associated cost and complexity. Relaxing the <inline-formula> <tex-math notation="LaTeX">\lambda /2 </tex-math></inline-formula> element spacing condition for large arrays introduces sidelobe and grating lobe effects that severely degrade the image quality. In certain imaging applications, such as automotive radars, the targets are sparsely located and the imaging domain can be approximated as a collection of point scatterers. In such cases, it is possible to "deconvolve" these sidelobe effects to recover a clean image. In this article, a double-recursive deconvolution algorithm titled Sparse Array Target-Segregation Using Recursive Nulling (SATURN) is proposed. It differs from existing CLEAN deconvolution algorithms in two steps: target response estimation and multiple target decorrelation. The target response is estimated using a Sweep and Extinguish step that removes the reliance on the complex image phase. Correlation between targets is suppressed using a Recursive Nulling step that prevents the breakup of point targets. The algorithm is applied to synthetic aperture radars (SARs) and multiple-input multiple-output (MIMO) radars in sparse 3-D imaging scenarios with canonical targets and real-world targets. Dynamic range improvement of 25 dB and thinning factors of over 200 are experimentally demonstrated using a 31-element circular array of X-band U-slot patch antennas with an array diameter of <inline-formula> <tex-math notation="LaTeX">30\lambda </tex-math></inline-formula>.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3328841</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Angular resolution ; Antenna arrays ; Automotive radar ; Automotive radars ; CLEAN deconvolution ; Complexity ; Deconvolution ; Image degradation ; Image quality ; Imaging ; Imaging radar ; imaging radars ; Imaging techniques ; Laser radar ; MIMO communication ; multiple-input multiple-output (MIMO) radars ; Patch antennas ; Radar ; Radar equipment ; Radar imaging ; SAR (radar) ; Segregation ; Sidelobe reduction ; sidelobe suppression ; Sidelobes ; sparse arrays ; Superhigh frequencies ; Synthetic aperture radar ; synthetic aperture radars (SARs) ; thinned arrays ; Transmitters</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-7cc2aa1cfd949b3d0f038255c4cf9e535da6ab6f09a738d5f1cbc66e9604c10d3</citedby><cites>FETCH-LOGICAL-c294t-7cc2aa1cfd949b3d0f038255c4cf9e535da6ab6f09a738d5f1cbc66e9604c10d3</cites><orcidid>0000-0003-2716-4622 ; 0000-0002-8989-2628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10302318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Muppala, Aditya Varma</creatorcontrib><creatorcontrib>Sarabandi, Kamal</creatorcontrib><title>SATURN: A Double-Recursive Deconvolution Algorithm for Suppressing Sidelobe Effects in Non-Nyquist SAR and MIMO Imaging Radars</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[The angular resolution of an imaging radar system is limited by the aperture size and its associated cost and complexity. Relaxing the <inline-formula> <tex-math notation="LaTeX">\lambda /2 </tex-math></inline-formula> element spacing condition for large arrays introduces sidelobe and grating lobe effects that severely degrade the image quality. In certain imaging applications, such as automotive radars, the targets are sparsely located and the imaging domain can be approximated as a collection of point scatterers. In such cases, it is possible to "deconvolve" these sidelobe effects to recover a clean image. In this article, a double-recursive deconvolution algorithm titled Sparse Array Target-Segregation Using Recursive Nulling (SATURN) is proposed. It differs from existing CLEAN deconvolution algorithms in two steps: target response estimation and multiple target decorrelation. The target response is estimated using a Sweep and Extinguish step that removes the reliance on the complex image phase. Correlation between targets is suppressed using a Recursive Nulling step that prevents the breakup of point targets. The algorithm is applied to synthetic aperture radars (SARs) and multiple-input multiple-output (MIMO) radars in sparse 3-D imaging scenarios with canonical targets and real-world targets. Dynamic range improvement of 25 dB and thinning factors of over 200 are experimentally demonstrated using a 31-element circular array of X-band U-slot patch antennas with an array diameter of <inline-formula> <tex-math notation="LaTeX">30\lambda </tex-math></inline-formula>.]]></description><subject>Algorithms</subject><subject>Angular resolution</subject><subject>Antenna arrays</subject><subject>Automotive radar</subject><subject>Automotive radars</subject><subject>CLEAN deconvolution</subject><subject>Complexity</subject><subject>Deconvolution</subject><subject>Image degradation</subject><subject>Image quality</subject><subject>Imaging</subject><subject>Imaging radar</subject><subject>imaging radars</subject><subject>Imaging techniques</subject><subject>Laser radar</subject><subject>MIMO communication</subject><subject>multiple-input multiple-output (MIMO) radars</subject><subject>Patch antennas</subject><subject>Radar</subject><subject>Radar equipment</subject><subject>Radar imaging</subject><subject>SAR (radar)</subject><subject>Segregation</subject><subject>Sidelobe reduction</subject><subject>sidelobe suppression</subject><subject>Sidelobes</subject><subject>sparse arrays</subject><subject>Superhigh frequencies</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radars (SARs)</subject><subject>thinned arrays</subject><subject>Transmitters</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM9rwjAUgMPYYM7tDxjsENi5LmmattmtqHOCP6DVc0nTxEVqo0kreNnfvhY97PLe5fvegw-AV4xGGCP2sZml2chHPhkR4sdxgO_AAFMaeygMgnswQJiFnh8z_xE8ObdHCAcURwPwmyWbbbr6hAmcmLaopJdK0VqnzxJOpDD12VRto00Nk2pnrG5-DlAZC7P2eLTSOV3vYKZLWZlCwqlSUjQO6hquTO2tLqdWuwZmSQp5XcLlfLmG8wPf9VLKS27dM3hQvHLy5baHYPs13Yy_vcV6Nh8nC0_4LGi8SAifcyxUyQJWkBIpRGKfUhEIxSQltOQhL0KFGI9IXFKFRSHCULIQBQKjkgzB-_Xu0ZpTK12T701r6-5l3tViUTco7Sh8pYQ1zlmp8qPVB24vOUZ5nznvM-d95vyWuXPero6WUv7jSQfhmPwBThp5ug</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Muppala, Aditya Varma</creator><creator>Sarabandi, Kamal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2716-4622</orcidid><orcidid>https://orcid.org/0000-0002-8989-2628</orcidid></search><sort><creationdate>2023</creationdate><title>SATURN: A Double-Recursive Deconvolution Algorithm for Suppressing Sidelobe Effects in Non-Nyquist SAR and MIMO Imaging Radars</title><author>Muppala, Aditya Varma ; Sarabandi, Kamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-7cc2aa1cfd949b3d0f038255c4cf9e535da6ab6f09a738d5f1cbc66e9604c10d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Angular resolution</topic><topic>Antenna arrays</topic><topic>Automotive radar</topic><topic>Automotive radars</topic><topic>CLEAN deconvolution</topic><topic>Complexity</topic><topic>Deconvolution</topic><topic>Image degradation</topic><topic>Image quality</topic><topic>Imaging</topic><topic>Imaging radar</topic><topic>imaging radars</topic><topic>Imaging techniques</topic><topic>Laser radar</topic><topic>MIMO communication</topic><topic>multiple-input multiple-output (MIMO) radars</topic><topic>Patch antennas</topic><topic>Radar</topic><topic>Radar equipment</topic><topic>Radar imaging</topic><topic>SAR (radar)</topic><topic>Segregation</topic><topic>Sidelobe reduction</topic><topic>sidelobe suppression</topic><topic>Sidelobes</topic><topic>sparse arrays</topic><topic>Superhigh frequencies</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radars (SARs)</topic><topic>thinned arrays</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muppala, Aditya Varma</creatorcontrib><creatorcontrib>Sarabandi, Kamal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muppala, Aditya Varma</au><au>Sarabandi, Kamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SATURN: A Double-Recursive Deconvolution Algorithm for Suppressing Sidelobe Effects in Non-Nyquist SAR and MIMO Imaging Radars</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[The angular resolution of an imaging radar system is limited by the aperture size and its associated cost and complexity. Relaxing the <inline-formula> <tex-math notation="LaTeX">\lambda /2 </tex-math></inline-formula> element spacing condition for large arrays introduces sidelobe and grating lobe effects that severely degrade the image quality. In certain imaging applications, such as automotive radars, the targets are sparsely located and the imaging domain can be approximated as a collection of point scatterers. In such cases, it is possible to "deconvolve" these sidelobe effects to recover a clean image. In this article, a double-recursive deconvolution algorithm titled Sparse Array Target-Segregation Using Recursive Nulling (SATURN) is proposed. It differs from existing CLEAN deconvolution algorithms in two steps: target response estimation and multiple target decorrelation. The target response is estimated using a Sweep and Extinguish step that removes the reliance on the complex image phase. Correlation between targets is suppressed using a Recursive Nulling step that prevents the breakup of point targets. The algorithm is applied to synthetic aperture radars (SARs) and multiple-input multiple-output (MIMO) radars in sparse 3-D imaging scenarios with canonical targets and real-world targets. Dynamic range improvement of 25 dB and thinning factors of over 200 are experimentally demonstrated using a 31-element circular array of X-band U-slot patch antennas with an array diameter of <inline-formula> <tex-math notation="LaTeX">30\lambda </tex-math></inline-formula>.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3328841</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2716-4622</orcidid><orcidid>https://orcid.org/0000-0002-8989-2628</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-12
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2023_3328841
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Angular resolution
Antenna arrays
Automotive radar
Automotive radars
CLEAN deconvolution
Complexity
Deconvolution
Image degradation
Image quality
Imaging
Imaging radar
imaging radars
Imaging techniques
Laser radar
MIMO communication
multiple-input multiple-output (MIMO) radars
Patch antennas
Radar
Radar equipment
Radar imaging
SAR (radar)
Segregation
Sidelobe reduction
sidelobe suppression
Sidelobes
sparse arrays
Superhigh frequencies
Synthetic aperture radar
synthetic aperture radars (SARs)
thinned arrays
Transmitters
title SATURN: A Double-Recursive Deconvolution Algorithm for Suppressing Sidelobe Effects in Non-Nyquist SAR and MIMO Imaging Radars
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SATURN:%20A%20Double-Recursive%20Deconvolution%20Algorithm%20for%20Suppressing%20Sidelobe%20Effects%20in%20Non-Nyquist%20SAR%20and%20MIMO%20Imaging%20Radars&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Muppala,%20Aditya%20Varma&rft.date=2023&rft.volume=61&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3328841&rft_dat=%3Cproquest_cross%3E2889728855%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-7cc2aa1cfd949b3d0f038255c4cf9e535da6ab6f09a738d5f1cbc66e9604c10d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889728855&rft_id=info:pmid/&rft_ieee_id=10302318&rfr_iscdi=true