Loading…

A Novel Method for Ocean Wave Spectra Retrieval Using Deep Learning From Sentinel-1 Wave Mode Data

Ocean wave is of great significance in marine environment prediction, maritime navigation, and global climate change. Synthetic aperture radar (SAR) is widely used in ocean wave spectra retrieval due to its 2-D high resolution, all-weather, and all-time advantages. Nevertheless, the nonlinear mappin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-16
Main Authors: Cao, Chenghui, Bao, Liwei, Gao, Gui, Liu, Genwang, Zhang, Xi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-2dc83a094c37b351e2931c0c8b9e0451ca8b7d5866a19f9dfc939e9d9a639ef83
container_end_page 16
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Cao, Chenghui
Bao, Liwei
Gao, Gui
Liu, Genwang
Zhang, Xi
description Ocean wave is of great significance in marine environment prediction, maritime navigation, and global climate change. Synthetic aperture radar (SAR) is widely used in ocean wave spectra retrieval due to its 2-D high resolution, all-weather, and all-time advantages. Nevertheless, the nonlinear mapping between SAR and ocean waves, caused by velocity bunching, hinders the advancement of wave spectra inversion techniques, resulting in low-quality and incomplete wave spectra. To overcome the problem, a novel deep learning model SAR2WV for ocean wave spectra retrieval based on Pix2pix is proposed by constructing the nonlinear mapping relationship of SAR cross spectra and ocean wave spectra. A total of 106 844 Sentinel-1 wave mode dataset along with the corresponding European Centre for Medium-Range Weather Forecasts (ECMWF) ERA 5 wave data is processed and used for training the SAR2WV model. Experiments demonstrate that the proposed SAR2WV model can significantly improve the accuracy of the retrieved wave spectra and wave parameters, with the spectra similarity improved by 60.3%, root-mean-square error (RMSE) of significant wave height (SWH) decreased from 0.966 to 0.386 m, RMSE of mean wave period (MWP) decreased from 1.208 s to 0.811 s, and correlation coefficient of peak wave direction increased from 0.65 to 0.72, which achieves better performance than ocean swell wave spectra (OSW) algorithm and other methods.
doi_str_mv 10.1109/TGRS.2024.3369080
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3369080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10443938</ieee_id><sourcerecordid>2956384319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-2dc83a094c37b351e2931c0c8b9e0451ca8b7d5866a19f9dfc939e9d9a639ef83</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmW7eyytrUJroR94XDabiaak2bhJC_57E9KDp5eB95kZHoQeKRlRSvTLbrHZjhhhYsS51ESRKzSgcawiIoW4RgNCtYyY0uwW3dX1gRAqYjoeoGSCP_wZCryC5tunOPMBrx3YEn_aM-BtBa4JFm-gCTmcbYH3dV5-4RlAhZdgQ9lN8-CPeAtlk5dQRLRHVz4FPLONvUc3mS1qeLjkEO3nr7vpW7RcL96nk2XkmJBNxFKnuCVaOD5OeEyBaU4dcSrRQNpnnVXJOI2VlJbqTKeZ01yDTrWVbWaKD9Fzv7cK_ucEdWMO_hTK9qRhOpZcCU5126J9ywVf1wEyU4X8aMOvocR0Kk2n0nQqzUVlyzz1TA4A__pCcM0V_wNuHW5b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956384319</pqid></control><display><type>article</type><title>A Novel Method for Ocean Wave Spectra Retrieval Using Deep Learning From Sentinel-1 Wave Mode Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cao, Chenghui ; Bao, Liwei ; Gao, Gui ; Liu, Genwang ; Zhang, Xi</creator><creatorcontrib>Cao, Chenghui ; Bao, Liwei ; Gao, Gui ; Liu, Genwang ; Zhang, Xi</creatorcontrib><description>Ocean wave is of great significance in marine environment prediction, maritime navigation, and global climate change. Synthetic aperture radar (SAR) is widely used in ocean wave spectra retrieval due to its 2-D high resolution, all-weather, and all-time advantages. Nevertheless, the nonlinear mapping between SAR and ocean waves, caused by velocity bunching, hinders the advancement of wave spectra inversion techniques, resulting in low-quality and incomplete wave spectra. To overcome the problem, a novel deep learning model SAR2WV for ocean wave spectra retrieval based on Pix2pix is proposed by constructing the nonlinear mapping relationship of SAR cross spectra and ocean wave spectra. A total of 106 844 Sentinel-1 wave mode dataset along with the corresponding European Centre for Medium-Range Weather Forecasts (ECMWF) ERA 5 wave data is processed and used for training the SAR2WV model. Experiments demonstrate that the proposed SAR2WV model can significantly improve the accuracy of the retrieved wave spectra and wave parameters, with the spectra similarity improved by 60.3%, root-mean-square error (RMSE) of significant wave height (SWH) decreased from 0.966 to 0.386 m, RMSE of mean wave period (MWP) decreased from 1.208 s to 0.811 s, and correlation coefficient of peak wave direction increased from 0.65 to 0.72, which achieves better performance than ocean swell wave spectra (OSW) algorithm and other methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3369080</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Climate change ; Correlation coefficient ; Correlation coefficients ; Data models ; Deep learning ; Global climate ; Image analysis ; Mapping ; Marine environment ; Navigation ; nonlinear mapping ; ocean wave spectra ; Ocean waves ; Parameter estimation ; Radar polarimetry ; Retrieval ; Root mean square ; Root-mean-square errors ; SAR (radar) ; Sentinel-1 ; Significant wave height ; Spectra ; Spectral analysis ; Surface water waves ; Surface waves ; Swell ; Synthetic aperture radar ; synthetic aperture radar (SAR) image spectra ; Wave data ; Wave direction ; Wave height ; Wave parameters ; Wave period ; Wave spectra ; Weather ; Weather forecasting</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-2dc83a094c37b351e2931c0c8b9e0451ca8b7d5866a19f9dfc939e9d9a639ef83</cites><orcidid>0000-0001-9195-7606 ; 0000-0003-4596-5829 ; 0000-0001-7907-6363 ; 0000-0003-2238-5020 ; 0000-0001-5748-362X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10443938$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Cao, Chenghui</creatorcontrib><creatorcontrib>Bao, Liwei</creatorcontrib><creatorcontrib>Gao, Gui</creatorcontrib><creatorcontrib>Liu, Genwang</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><title>A Novel Method for Ocean Wave Spectra Retrieval Using Deep Learning From Sentinel-1 Wave Mode Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Ocean wave is of great significance in marine environment prediction, maritime navigation, and global climate change. Synthetic aperture radar (SAR) is widely used in ocean wave spectra retrieval due to its 2-D high resolution, all-weather, and all-time advantages. Nevertheless, the nonlinear mapping between SAR and ocean waves, caused by velocity bunching, hinders the advancement of wave spectra inversion techniques, resulting in low-quality and incomplete wave spectra. To overcome the problem, a novel deep learning model SAR2WV for ocean wave spectra retrieval based on Pix2pix is proposed by constructing the nonlinear mapping relationship of SAR cross spectra and ocean wave spectra. A total of 106 844 Sentinel-1 wave mode dataset along with the corresponding European Centre for Medium-Range Weather Forecasts (ECMWF) ERA 5 wave data is processed and used for training the SAR2WV model. Experiments demonstrate that the proposed SAR2WV model can significantly improve the accuracy of the retrieved wave spectra and wave parameters, with the spectra similarity improved by 60.3%, root-mean-square error (RMSE) of significant wave height (SWH) decreased from 0.966 to 0.386 m, RMSE of mean wave period (MWP) decreased from 1.208 s to 0.811 s, and correlation coefficient of peak wave direction increased from 0.65 to 0.72, which achieves better performance than ocean swell wave spectra (OSW) algorithm and other methods.</description><subject>Algorithms</subject><subject>Climate change</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Global climate</subject><subject>Image analysis</subject><subject>Mapping</subject><subject>Marine environment</subject><subject>Navigation</subject><subject>nonlinear mapping</subject><subject>ocean wave spectra</subject><subject>Ocean waves</subject><subject>Parameter estimation</subject><subject>Radar polarimetry</subject><subject>Retrieval</subject><subject>Root mean square</subject><subject>Root-mean-square errors</subject><subject>SAR (radar)</subject><subject>Sentinel-1</subject><subject>Significant wave height</subject><subject>Spectra</subject><subject>Spectral analysis</subject><subject>Surface water waves</subject><subject>Surface waves</subject><subject>Swell</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR) image spectra</subject><subject>Wave data</subject><subject>Wave direction</subject><subject>Wave height</subject><subject>Wave parameters</subject><subject>Wave period</subject><subject>Wave spectra</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmW7eyytrUJroR94XDabiaak2bhJC_57E9KDp5eB95kZHoQeKRlRSvTLbrHZjhhhYsS51ESRKzSgcawiIoW4RgNCtYyY0uwW3dX1gRAqYjoeoGSCP_wZCryC5tunOPMBrx3YEn_aM-BtBa4JFm-gCTmcbYH3dV5-4RlAhZdgQ9lN8-CPeAtlk5dQRLRHVz4FPLONvUc3mS1qeLjkEO3nr7vpW7RcL96nk2XkmJBNxFKnuCVaOD5OeEyBaU4dcSrRQNpnnVXJOI2VlJbqTKeZ01yDTrWVbWaKD9Fzv7cK_ucEdWMO_hTK9qRhOpZcCU5126J9ywVf1wEyU4X8aMOvocR0Kk2n0nQqzUVlyzz1TA4A__pCcM0V_wNuHW5b</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Cao, Chenghui</creator><creator>Bao, Liwei</creator><creator>Gao, Gui</creator><creator>Liu, Genwang</creator><creator>Zhang, Xi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9195-7606</orcidid><orcidid>https://orcid.org/0000-0003-4596-5829</orcidid><orcidid>https://orcid.org/0000-0001-7907-6363</orcidid><orcidid>https://orcid.org/0000-0003-2238-5020</orcidid><orcidid>https://orcid.org/0000-0001-5748-362X</orcidid></search><sort><creationdate>2024</creationdate><title>A Novel Method for Ocean Wave Spectra Retrieval Using Deep Learning From Sentinel-1 Wave Mode Data</title><author>Cao, Chenghui ; Bao, Liwei ; Gao, Gui ; Liu, Genwang ; Zhang, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-2dc83a094c37b351e2931c0c8b9e0451ca8b7d5866a19f9dfc939e9d9a639ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Climate change</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Global climate</topic><topic>Image analysis</topic><topic>Mapping</topic><topic>Marine environment</topic><topic>Navigation</topic><topic>nonlinear mapping</topic><topic>ocean wave spectra</topic><topic>Ocean waves</topic><topic>Parameter estimation</topic><topic>Radar polarimetry</topic><topic>Retrieval</topic><topic>Root mean square</topic><topic>Root-mean-square errors</topic><topic>SAR (radar)</topic><topic>Sentinel-1</topic><topic>Significant wave height</topic><topic>Spectra</topic><topic>Spectral analysis</topic><topic>Surface water waves</topic><topic>Surface waves</topic><topic>Swell</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR) image spectra</topic><topic>Wave data</topic><topic>Wave direction</topic><topic>Wave height</topic><topic>Wave parameters</topic><topic>Wave period</topic><topic>Wave spectra</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Chenghui</creatorcontrib><creatorcontrib>Bao, Liwei</creatorcontrib><creatorcontrib>Gao, Gui</creatorcontrib><creatorcontrib>Liu, Genwang</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Chenghui</au><au>Bao, Liwei</au><au>Gao, Gui</au><au>Liu, Genwang</au><au>Zhang, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Method for Ocean Wave Spectra Retrieval Using Deep Learning From Sentinel-1 Wave Mode Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Ocean wave is of great significance in marine environment prediction, maritime navigation, and global climate change. Synthetic aperture radar (SAR) is widely used in ocean wave spectra retrieval due to its 2-D high resolution, all-weather, and all-time advantages. Nevertheless, the nonlinear mapping between SAR and ocean waves, caused by velocity bunching, hinders the advancement of wave spectra inversion techniques, resulting in low-quality and incomplete wave spectra. To overcome the problem, a novel deep learning model SAR2WV for ocean wave spectra retrieval based on Pix2pix is proposed by constructing the nonlinear mapping relationship of SAR cross spectra and ocean wave spectra. A total of 106 844 Sentinel-1 wave mode dataset along with the corresponding European Centre for Medium-Range Weather Forecasts (ECMWF) ERA 5 wave data is processed and used for training the SAR2WV model. Experiments demonstrate that the proposed SAR2WV model can significantly improve the accuracy of the retrieved wave spectra and wave parameters, with the spectra similarity improved by 60.3%, root-mean-square error (RMSE) of significant wave height (SWH) decreased from 0.966 to 0.386 m, RMSE of mean wave period (MWP) decreased from 1.208 s to 0.811 s, and correlation coefficient of peak wave direction increased from 0.65 to 0.72, which achieves better performance than ocean swell wave spectra (OSW) algorithm and other methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3369080</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9195-7606</orcidid><orcidid>https://orcid.org/0000-0003-4596-5829</orcidid><orcidid>https://orcid.org/0000-0001-7907-6363</orcidid><orcidid>https://orcid.org/0000-0003-2238-5020</orcidid><orcidid>https://orcid.org/0000-0001-5748-362X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-16
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2024_3369080
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Climate change
Correlation coefficient
Correlation coefficients
Data models
Deep learning
Global climate
Image analysis
Mapping
Marine environment
Navigation
nonlinear mapping
ocean wave spectra
Ocean waves
Parameter estimation
Radar polarimetry
Retrieval
Root mean square
Root-mean-square errors
SAR (radar)
Sentinel-1
Significant wave height
Spectra
Spectral analysis
Surface water waves
Surface waves
Swell
Synthetic aperture radar
synthetic aperture radar (SAR) image spectra
Wave data
Wave direction
Wave height
Wave parameters
Wave period
Wave spectra
Weather
Weather forecasting
title A Novel Method for Ocean Wave Spectra Retrieval Using Deep Learning From Sentinel-1 Wave Mode Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A18%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Method%20for%20Ocean%20Wave%20Spectra%20Retrieval%20Using%20Deep%20Learning%20From%20Sentinel-1%20Wave%20Mode%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Cao,%20Chenghui&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3369080&rft_dat=%3Cproquest_cross%3E2956384319%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-2dc83a094c37b351e2931c0c8b9e0451ca8b7d5866a19f9dfc939e9d9a639ef83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2956384319&rft_id=info:pmid/&rft_ieee_id=10443938&rfr_iscdi=true