Loading…
A Novel Method for Ocean Wave Spectra Retrieval Using Deep Learning From Sentinel-1 Wave Mode Data
Ocean wave is of great significance in marine environment prediction, maritime navigation, and global climate change. Synthetic aperture radar (SAR) is widely used in ocean wave spectra retrieval due to its 2-D high resolution, all-weather, and all-time advantages. Nevertheless, the nonlinear mappin...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-16 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-2dc83a094c37b351e2931c0c8b9e0451ca8b7d5866a19f9dfc939e9d9a639ef83 |
container_end_page | 16 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Cao, Chenghui Bao, Liwei Gao, Gui Liu, Genwang Zhang, Xi |
description | Ocean wave is of great significance in marine environment prediction, maritime navigation, and global climate change. Synthetic aperture radar (SAR) is widely used in ocean wave spectra retrieval due to its 2-D high resolution, all-weather, and all-time advantages. Nevertheless, the nonlinear mapping between SAR and ocean waves, caused by velocity bunching, hinders the advancement of wave spectra inversion techniques, resulting in low-quality and incomplete wave spectra. To overcome the problem, a novel deep learning model SAR2WV for ocean wave spectra retrieval based on Pix2pix is proposed by constructing the nonlinear mapping relationship of SAR cross spectra and ocean wave spectra. A total of 106 844 Sentinel-1 wave mode dataset along with the corresponding European Centre for Medium-Range Weather Forecasts (ECMWF) ERA 5 wave data is processed and used for training the SAR2WV model. Experiments demonstrate that the proposed SAR2WV model can significantly improve the accuracy of the retrieved wave spectra and wave parameters, with the spectra similarity improved by 60.3%, root-mean-square error (RMSE) of significant wave height (SWH) decreased from 0.966 to 0.386 m, RMSE of mean wave period (MWP) decreased from 1.208 s to 0.811 s, and correlation coefficient of peak wave direction increased from 0.65 to 0.72, which achieves better performance than ocean swell wave spectra (OSW) algorithm and other methods. |
doi_str_mv | 10.1109/TGRS.2024.3369080 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3369080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10443938</ieee_id><sourcerecordid>2956384319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-2dc83a094c37b351e2931c0c8b9e0451ca8b7d5866a19f9dfc939e9d9a639ef83</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmW7eyytrUJroR94XDabiaak2bhJC_57E9KDp5eB95kZHoQeKRlRSvTLbrHZjhhhYsS51ESRKzSgcawiIoW4RgNCtYyY0uwW3dX1gRAqYjoeoGSCP_wZCryC5tunOPMBrx3YEn_aM-BtBa4JFm-gCTmcbYH3dV5-4RlAhZdgQ9lN8-CPeAtlk5dQRLRHVz4FPLONvUc3mS1qeLjkEO3nr7vpW7RcL96nk2XkmJBNxFKnuCVaOD5OeEyBaU4dcSrRQNpnnVXJOI2VlJbqTKeZ01yDTrWVbWaKD9Fzv7cK_ucEdWMO_hTK9qRhOpZcCU5126J9ywVf1wEyU4X8aMOvocR0Kk2n0nQqzUVlyzz1TA4A__pCcM0V_wNuHW5b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956384319</pqid></control><display><type>article</type><title>A Novel Method for Ocean Wave Spectra Retrieval Using Deep Learning From Sentinel-1 Wave Mode Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cao, Chenghui ; Bao, Liwei ; Gao, Gui ; Liu, Genwang ; Zhang, Xi</creator><creatorcontrib>Cao, Chenghui ; Bao, Liwei ; Gao, Gui ; Liu, Genwang ; Zhang, Xi</creatorcontrib><description>Ocean wave is of great significance in marine environment prediction, maritime navigation, and global climate change. Synthetic aperture radar (SAR) is widely used in ocean wave spectra retrieval due to its 2-D high resolution, all-weather, and all-time advantages. Nevertheless, the nonlinear mapping between SAR and ocean waves, caused by velocity bunching, hinders the advancement of wave spectra inversion techniques, resulting in low-quality and incomplete wave spectra. To overcome the problem, a novel deep learning model SAR2WV for ocean wave spectra retrieval based on Pix2pix is proposed by constructing the nonlinear mapping relationship of SAR cross spectra and ocean wave spectra. A total of 106 844 Sentinel-1 wave mode dataset along with the corresponding European Centre for Medium-Range Weather Forecasts (ECMWF) ERA 5 wave data is processed and used for training the SAR2WV model. Experiments demonstrate that the proposed SAR2WV model can significantly improve the accuracy of the retrieved wave spectra and wave parameters, with the spectra similarity improved by 60.3%, root-mean-square error (RMSE) of significant wave height (SWH) decreased from 0.966 to 0.386 m, RMSE of mean wave period (MWP) decreased from 1.208 s to 0.811 s, and correlation coefficient of peak wave direction increased from 0.65 to 0.72, which achieves better performance than ocean swell wave spectra (OSW) algorithm and other methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3369080</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Climate change ; Correlation coefficient ; Correlation coefficients ; Data models ; Deep learning ; Global climate ; Image analysis ; Mapping ; Marine environment ; Navigation ; nonlinear mapping ; ocean wave spectra ; Ocean waves ; Parameter estimation ; Radar polarimetry ; Retrieval ; Root mean square ; Root-mean-square errors ; SAR (radar) ; Sentinel-1 ; Significant wave height ; Spectra ; Spectral analysis ; Surface water waves ; Surface waves ; Swell ; Synthetic aperture radar ; synthetic aperture radar (SAR) image spectra ; Wave data ; Wave direction ; Wave height ; Wave parameters ; Wave period ; Wave spectra ; Weather ; Weather forecasting</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-2dc83a094c37b351e2931c0c8b9e0451ca8b7d5866a19f9dfc939e9d9a639ef83</cites><orcidid>0000-0001-9195-7606 ; 0000-0003-4596-5829 ; 0000-0001-7907-6363 ; 0000-0003-2238-5020 ; 0000-0001-5748-362X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10443938$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Cao, Chenghui</creatorcontrib><creatorcontrib>Bao, Liwei</creatorcontrib><creatorcontrib>Gao, Gui</creatorcontrib><creatorcontrib>Liu, Genwang</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><title>A Novel Method for Ocean Wave Spectra Retrieval Using Deep Learning From Sentinel-1 Wave Mode Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Ocean wave is of great significance in marine environment prediction, maritime navigation, and global climate change. Synthetic aperture radar (SAR) is widely used in ocean wave spectra retrieval due to its 2-D high resolution, all-weather, and all-time advantages. Nevertheless, the nonlinear mapping between SAR and ocean waves, caused by velocity bunching, hinders the advancement of wave spectra inversion techniques, resulting in low-quality and incomplete wave spectra. To overcome the problem, a novel deep learning model SAR2WV for ocean wave spectra retrieval based on Pix2pix is proposed by constructing the nonlinear mapping relationship of SAR cross spectra and ocean wave spectra. A total of 106 844 Sentinel-1 wave mode dataset along with the corresponding European Centre for Medium-Range Weather Forecasts (ECMWF) ERA 5 wave data is processed and used for training the SAR2WV model. Experiments demonstrate that the proposed SAR2WV model can significantly improve the accuracy of the retrieved wave spectra and wave parameters, with the spectra similarity improved by 60.3%, root-mean-square error (RMSE) of significant wave height (SWH) decreased from 0.966 to 0.386 m, RMSE of mean wave period (MWP) decreased from 1.208 s to 0.811 s, and correlation coefficient of peak wave direction increased from 0.65 to 0.72, which achieves better performance than ocean swell wave spectra (OSW) algorithm and other methods.</description><subject>Algorithms</subject><subject>Climate change</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Global climate</subject><subject>Image analysis</subject><subject>Mapping</subject><subject>Marine environment</subject><subject>Navigation</subject><subject>nonlinear mapping</subject><subject>ocean wave spectra</subject><subject>Ocean waves</subject><subject>Parameter estimation</subject><subject>Radar polarimetry</subject><subject>Retrieval</subject><subject>Root mean square</subject><subject>Root-mean-square errors</subject><subject>SAR (radar)</subject><subject>Sentinel-1</subject><subject>Significant wave height</subject><subject>Spectra</subject><subject>Spectral analysis</subject><subject>Surface water waves</subject><subject>Surface waves</subject><subject>Swell</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR) image spectra</subject><subject>Wave data</subject><subject>Wave direction</subject><subject>Wave height</subject><subject>Wave parameters</subject><subject>Wave period</subject><subject>Wave spectra</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmW7eyytrUJroR94XDabiaak2bhJC_57E9KDp5eB95kZHoQeKRlRSvTLbrHZjhhhYsS51ESRKzSgcawiIoW4RgNCtYyY0uwW3dX1gRAqYjoeoGSCP_wZCryC5tunOPMBrx3YEn_aM-BtBa4JFm-gCTmcbYH3dV5-4RlAhZdgQ9lN8-CPeAtlk5dQRLRHVz4FPLONvUc3mS1qeLjkEO3nr7vpW7RcL96nk2XkmJBNxFKnuCVaOD5OeEyBaU4dcSrRQNpnnVXJOI2VlJbqTKeZ01yDTrWVbWaKD9Fzv7cK_ucEdWMO_hTK9qRhOpZcCU5126J9ywVf1wEyU4X8aMOvocR0Kk2n0nQqzUVlyzz1TA4A__pCcM0V_wNuHW5b</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Cao, Chenghui</creator><creator>Bao, Liwei</creator><creator>Gao, Gui</creator><creator>Liu, Genwang</creator><creator>Zhang, Xi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9195-7606</orcidid><orcidid>https://orcid.org/0000-0003-4596-5829</orcidid><orcidid>https://orcid.org/0000-0001-7907-6363</orcidid><orcidid>https://orcid.org/0000-0003-2238-5020</orcidid><orcidid>https://orcid.org/0000-0001-5748-362X</orcidid></search><sort><creationdate>2024</creationdate><title>A Novel Method for Ocean Wave Spectra Retrieval Using Deep Learning From Sentinel-1 Wave Mode Data</title><author>Cao, Chenghui ; Bao, Liwei ; Gao, Gui ; Liu, Genwang ; Zhang, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-2dc83a094c37b351e2931c0c8b9e0451ca8b7d5866a19f9dfc939e9d9a639ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Climate change</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Global climate</topic><topic>Image analysis</topic><topic>Mapping</topic><topic>Marine environment</topic><topic>Navigation</topic><topic>nonlinear mapping</topic><topic>ocean wave spectra</topic><topic>Ocean waves</topic><topic>Parameter estimation</topic><topic>Radar polarimetry</topic><topic>Retrieval</topic><topic>Root mean square</topic><topic>Root-mean-square errors</topic><topic>SAR (radar)</topic><topic>Sentinel-1</topic><topic>Significant wave height</topic><topic>Spectra</topic><topic>Spectral analysis</topic><topic>Surface water waves</topic><topic>Surface waves</topic><topic>Swell</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR) image spectra</topic><topic>Wave data</topic><topic>Wave direction</topic><topic>Wave height</topic><topic>Wave parameters</topic><topic>Wave period</topic><topic>Wave spectra</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Chenghui</creatorcontrib><creatorcontrib>Bao, Liwei</creatorcontrib><creatorcontrib>Gao, Gui</creatorcontrib><creatorcontrib>Liu, Genwang</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Chenghui</au><au>Bao, Liwei</au><au>Gao, Gui</au><au>Liu, Genwang</au><au>Zhang, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Method for Ocean Wave Spectra Retrieval Using Deep Learning From Sentinel-1 Wave Mode Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Ocean wave is of great significance in marine environment prediction, maritime navigation, and global climate change. Synthetic aperture radar (SAR) is widely used in ocean wave spectra retrieval due to its 2-D high resolution, all-weather, and all-time advantages. Nevertheless, the nonlinear mapping between SAR and ocean waves, caused by velocity bunching, hinders the advancement of wave spectra inversion techniques, resulting in low-quality and incomplete wave spectra. To overcome the problem, a novel deep learning model SAR2WV for ocean wave spectra retrieval based on Pix2pix is proposed by constructing the nonlinear mapping relationship of SAR cross spectra and ocean wave spectra. A total of 106 844 Sentinel-1 wave mode dataset along with the corresponding European Centre for Medium-Range Weather Forecasts (ECMWF) ERA 5 wave data is processed and used for training the SAR2WV model. Experiments demonstrate that the proposed SAR2WV model can significantly improve the accuracy of the retrieved wave spectra and wave parameters, with the spectra similarity improved by 60.3%, root-mean-square error (RMSE) of significant wave height (SWH) decreased from 0.966 to 0.386 m, RMSE of mean wave period (MWP) decreased from 1.208 s to 0.811 s, and correlation coefficient of peak wave direction increased from 0.65 to 0.72, which achieves better performance than ocean swell wave spectra (OSW) algorithm and other methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3369080</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9195-7606</orcidid><orcidid>https://orcid.org/0000-0003-4596-5829</orcidid><orcidid>https://orcid.org/0000-0001-7907-6363</orcidid><orcidid>https://orcid.org/0000-0003-2238-5020</orcidid><orcidid>https://orcid.org/0000-0001-5748-362X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-16 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2024_3369080 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Climate change Correlation coefficient Correlation coefficients Data models Deep learning Global climate Image analysis Mapping Marine environment Navigation nonlinear mapping ocean wave spectra Ocean waves Parameter estimation Radar polarimetry Retrieval Root mean square Root-mean-square errors SAR (radar) Sentinel-1 Significant wave height Spectra Spectral analysis Surface water waves Surface waves Swell Synthetic aperture radar synthetic aperture radar (SAR) image spectra Wave data Wave direction Wave height Wave parameters Wave period Wave spectra Weather Weather forecasting |
title | A Novel Method for Ocean Wave Spectra Retrieval Using Deep Learning From Sentinel-1 Wave Mode Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A18%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Method%20for%20Ocean%20Wave%20Spectra%20Retrieval%20Using%20Deep%20Learning%20From%20Sentinel-1%20Wave%20Mode%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Cao,%20Chenghui&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3369080&rft_dat=%3Cproquest_cross%3E2956384319%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-2dc83a094c37b351e2931c0c8b9e0451ca8b7d5866a19f9dfc939e9d9a639ef83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2956384319&rft_id=info:pmid/&rft_ieee_id=10443938&rfr_iscdi=true |