Loading…

Prompt-Driven Building Footprint Extraction in Aerial Images With Offset-Building Model

More accurate extraction of invisible building footprints from very-high-resolution (VHR) aerial images relies on roof segmentation and roof-to-footprint offset extraction. Existing methods based on instance segmentation suffer from poor generalization when extended to large-scale data production an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-15
Main Authors: Li, Kai, Deng, Yupeng, Kong, Yunlong, Liu, Diyou, Chen, Jingbo, Meng, Yu, Ma, Junxian, Wang, Chenhao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c219t-b9a841e1d0ea4c27489b590cdfdfa273bbd7c08d4c46ba97de32a3637274026c3
container_end_page 15
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Li, Kai
Deng, Yupeng
Kong, Yunlong
Liu, Diyou
Chen, Jingbo
Meng, Yu
Ma, Junxian
Wang, Chenhao
description More accurate extraction of invisible building footprints from very-high-resolution (VHR) aerial images relies on roof segmentation and roof-to-footprint offset extraction. Existing methods based on instance segmentation suffer from poor generalization when extended to large-scale data production and fail to achieve low-cost human interaction. This prompt paradigm inspires us to design a promptable framework for roof and offset extraction, and transforms end-to-end algorithms into promptable methods. Within this framework, we propose a novel offset-building model (OBM). Based on prompt prediction, we first discover a common pattern of predicting offsets and tailored Distance-NMS (DNMS) algorithms for offset optimization. To rigorously evaluate the algorithm's capabilities, we introduce a prompt-based evaluation method, where our model reduces offset errors by 16.6% and improves roof Intersection over Union (IoU) by 10.8% compared to other models. Leveraging the common patterns in predicting offsets, DNMS algorithms enable models to further reduce offset vector loss (VL) by 6.5%. To further validate the generalization of models, we tested them using a newly proposed test set, Huizhou test set, with over 7,000 manually annotated instance samples. Our algorithms and dataset will be available at https://github.com/likaiucas/OBM .
doi_str_mv 10.1109/TGRS.2024.3487652
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3487652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10737420</ieee_id><sourcerecordid>3128836601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-b9a841e1d0ea4c27489b590cdfdfa273bbd7c08d4c46ba97de32a3637274026c3</originalsourceid><addsrcrecordid>eNpNkMtOAjEUQBujiYh-gImLJq4H-5o-lqiAJBiMYlhOOtMOlgxTbIvRv3cIxLi6m3PuzT0AXGM0wBipu8Xk9W1AEGEDyqTgOTkBPZznMkOcsVPQQ1jxjEhFzsFFjGuEMMux6IHlS_Cbbcoeg_uyLbzfuca4dgXH3qdtcG2Co-8UdJWcb6Fr4dAGpxs43eiVjXDp0gec13W0KftTn72xzSU4q3UT7dVx9sH7eLR4eMpm88n0YTjLKoJVykqlJcMWG2Q1q4hgUpW5QpWpTa2JoGVpRIWkYRXjpVbCWEo05VR0KCK8on1we9i7Df5zZ2Mq1n4X2u5kQTGRknKOcEfhA1UFH2OwddH9ttHhp8Co2Pcr9v2Kfb_i2K9zbg6Os9b-4wUVjCD6CyGXbFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128836601</pqid></control><display><type>article</type><title>Prompt-Driven Building Footprint Extraction in Aerial Images With Offset-Building Model</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Kai ; Deng, Yupeng ; Kong, Yunlong ; Liu, Diyou ; Chen, Jingbo ; Meng, Yu ; Ma, Junxian ; Wang, Chenhao</creator><creatorcontrib>Li, Kai ; Deng, Yupeng ; Kong, Yunlong ; Liu, Diyou ; Chen, Jingbo ; Meng, Yu ; Ma, Junxian ; Wang, Chenhao</creatorcontrib><description>More accurate extraction of invisible building footprints from very-high-resolution (VHR) aerial images relies on roof segmentation and roof-to-footprint offset extraction. Existing methods based on instance segmentation suffer from poor generalization when extended to large-scale data production and fail to achieve low-cost human interaction. This prompt paradigm inspires us to design a promptable framework for roof and offset extraction, and transforms end-to-end algorithms into promptable methods. Within this framework, we propose a novel offset-building model (OBM). Based on prompt prediction, we first discover a common pattern of predicting offsets and tailored Distance-NMS (DNMS) algorithms for offset optimization. To rigorously evaluate the algorithm's capabilities, we introduce a prompt-based evaluation method, where our model reduces offset errors by 16.6% and improves roof Intersection over Union (IoU) by 10.8% compared to other models. Leveraging the common patterns in predicting offsets, DNMS algorithms enable models to further reduce offset vector loss (VL) by 6.5%. To further validate the generalization of models, we tested them using a newly proposed test set, Huizhou test set, with over 7,000 manually annotated instance samples. Our algorithms and dataset will be available at https://github.com/likaiucas/OBM .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3487652</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Building footprint extraction (BFE) ; Buildings ; Data mining ; Data models ; Error reduction ; Feature extraction ; Image processing ; Image resolution ; Image segmentation ; Instance segmentation ; nonmaximum suppression (NMS) ; Offsets ; Prediction algorithms ; Predictions ; Production ; Remote sensing ; roof segmentation ; roof-to-footprint offset extraction ; segment anything model (SAM) ; Test sets ; Three-dimensional displays ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-b9a841e1d0ea4c27489b590cdfdfa273bbd7c08d4c46ba97de32a3637274026c3</cites><orcidid>0000-0002-7025-2137 ; 0000-0001-8396-0338 ; 0000-0001-7161-434X ; 0009-0001-4162-1925 ; 0000-0002-0644-3166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10737420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,4010,27904,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Deng, Yupeng</creatorcontrib><creatorcontrib>Kong, Yunlong</creatorcontrib><creatorcontrib>Liu, Diyou</creatorcontrib><creatorcontrib>Chen, Jingbo</creatorcontrib><creatorcontrib>Meng, Yu</creatorcontrib><creatorcontrib>Ma, Junxian</creatorcontrib><creatorcontrib>Wang, Chenhao</creatorcontrib><title>Prompt-Driven Building Footprint Extraction in Aerial Images With Offset-Building Model</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>More accurate extraction of invisible building footprints from very-high-resolution (VHR) aerial images relies on roof segmentation and roof-to-footprint offset extraction. Existing methods based on instance segmentation suffer from poor generalization when extended to large-scale data production and fail to achieve low-cost human interaction. This prompt paradigm inspires us to design a promptable framework for roof and offset extraction, and transforms end-to-end algorithms into promptable methods. Within this framework, we propose a novel offset-building model (OBM). Based on prompt prediction, we first discover a common pattern of predicting offsets and tailored Distance-NMS (DNMS) algorithms for offset optimization. To rigorously evaluate the algorithm's capabilities, we introduce a prompt-based evaluation method, where our model reduces offset errors by 16.6% and improves roof Intersection over Union (IoU) by 10.8% compared to other models. Leveraging the common patterns in predicting offsets, DNMS algorithms enable models to further reduce offset vector loss (VL) by 6.5%. To further validate the generalization of models, we tested them using a newly proposed test set, Huizhou test set, with over 7,000 manually annotated instance samples. Our algorithms and dataset will be available at https://github.com/likaiucas/OBM .</description><subject>Algorithms</subject><subject>Building footprint extraction (BFE)</subject><subject>Buildings</subject><subject>Data mining</subject><subject>Data models</subject><subject>Error reduction</subject><subject>Feature extraction</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Instance segmentation</subject><subject>nonmaximum suppression (NMS)</subject><subject>Offsets</subject><subject>Prediction algorithms</subject><subject>Predictions</subject><subject>Production</subject><subject>Remote sensing</subject><subject>roof segmentation</subject><subject>roof-to-footprint offset extraction</subject><subject>segment anything model (SAM)</subject><subject>Test sets</subject><subject>Three-dimensional displays</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOAjEUQBujiYh-gImLJq4H-5o-lqiAJBiMYlhOOtMOlgxTbIvRv3cIxLi6m3PuzT0AXGM0wBipu8Xk9W1AEGEDyqTgOTkBPZznMkOcsVPQQ1jxjEhFzsFFjGuEMMux6IHlS_Cbbcoeg_uyLbzfuca4dgXH3qdtcG2Co-8UdJWcb6Fr4dAGpxs43eiVjXDp0gec13W0KftTn72xzSU4q3UT7dVx9sH7eLR4eMpm88n0YTjLKoJVykqlJcMWG2Q1q4hgUpW5QpWpTa2JoGVpRIWkYRXjpVbCWEo05VR0KCK8on1we9i7Df5zZ2Mq1n4X2u5kQTGRknKOcEfhA1UFH2OwddH9ttHhp8Co2Pcr9v2Kfb_i2K9zbg6Os9b-4wUVjCD6CyGXbFY</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Kai</creator><creator>Deng, Yupeng</creator><creator>Kong, Yunlong</creator><creator>Liu, Diyou</creator><creator>Chen, Jingbo</creator><creator>Meng, Yu</creator><creator>Ma, Junxian</creator><creator>Wang, Chenhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7025-2137</orcidid><orcidid>https://orcid.org/0000-0001-8396-0338</orcidid><orcidid>https://orcid.org/0000-0001-7161-434X</orcidid><orcidid>https://orcid.org/0009-0001-4162-1925</orcidid><orcidid>https://orcid.org/0000-0002-0644-3166</orcidid></search><sort><creationdate>2024</creationdate><title>Prompt-Driven Building Footprint Extraction in Aerial Images With Offset-Building Model</title><author>Li, Kai ; Deng, Yupeng ; Kong, Yunlong ; Liu, Diyou ; Chen, Jingbo ; Meng, Yu ; Ma, Junxian ; Wang, Chenhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-b9a841e1d0ea4c27489b590cdfdfa273bbd7c08d4c46ba97de32a3637274026c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Building footprint extraction (BFE)</topic><topic>Buildings</topic><topic>Data mining</topic><topic>Data models</topic><topic>Error reduction</topic><topic>Feature extraction</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Instance segmentation</topic><topic>nonmaximum suppression (NMS)</topic><topic>Offsets</topic><topic>Prediction algorithms</topic><topic>Predictions</topic><topic>Production</topic><topic>Remote sensing</topic><topic>roof segmentation</topic><topic>roof-to-footprint offset extraction</topic><topic>segment anything model (SAM)</topic><topic>Test sets</topic><topic>Three-dimensional displays</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Deng, Yupeng</creatorcontrib><creatorcontrib>Kong, Yunlong</creatorcontrib><creatorcontrib>Liu, Diyou</creatorcontrib><creatorcontrib>Chen, Jingbo</creatorcontrib><creatorcontrib>Meng, Yu</creatorcontrib><creatorcontrib>Ma, Junxian</creatorcontrib><creatorcontrib>Wang, Chenhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Kai</au><au>Deng, Yupeng</au><au>Kong, Yunlong</au><au>Liu, Diyou</au><au>Chen, Jingbo</au><au>Meng, Yu</au><au>Ma, Junxian</au><au>Wang, Chenhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prompt-Driven Building Footprint Extraction in Aerial Images With Offset-Building Model</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>More accurate extraction of invisible building footprints from very-high-resolution (VHR) aerial images relies on roof segmentation and roof-to-footprint offset extraction. Existing methods based on instance segmentation suffer from poor generalization when extended to large-scale data production and fail to achieve low-cost human interaction. This prompt paradigm inspires us to design a promptable framework for roof and offset extraction, and transforms end-to-end algorithms into promptable methods. Within this framework, we propose a novel offset-building model (OBM). Based on prompt prediction, we first discover a common pattern of predicting offsets and tailored Distance-NMS (DNMS) algorithms for offset optimization. To rigorously evaluate the algorithm's capabilities, we introduce a prompt-based evaluation method, where our model reduces offset errors by 16.6% and improves roof Intersection over Union (IoU) by 10.8% compared to other models. Leveraging the common patterns in predicting offsets, DNMS algorithms enable models to further reduce offset vector loss (VL) by 6.5%. To further validate the generalization of models, we tested them using a newly proposed test set, Huizhou test set, with over 7,000 manually annotated instance samples. Our algorithms and dataset will be available at https://github.com/likaiucas/OBM .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3487652</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7025-2137</orcidid><orcidid>https://orcid.org/0000-0001-8396-0338</orcidid><orcidid>https://orcid.org/0000-0001-7161-434X</orcidid><orcidid>https://orcid.org/0009-0001-4162-1925</orcidid><orcidid>https://orcid.org/0000-0002-0644-3166</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2024_3487652
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Building footprint extraction (BFE)
Buildings
Data mining
Data models
Error reduction
Feature extraction
Image processing
Image resolution
Image segmentation
Instance segmentation
nonmaximum suppression (NMS)
Offsets
Prediction algorithms
Predictions
Production
Remote sensing
roof segmentation
roof-to-footprint offset extraction
segment anything model (SAM)
Test sets
Three-dimensional displays
Training
title Prompt-Driven Building Footprint Extraction in Aerial Images With Offset-Building Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prompt-Driven%20Building%20Footprint%20Extraction%20in%20Aerial%20Images%20With%20Offset-Building%20Model&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Li,%20Kai&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3487652&rft_dat=%3Cproquest_cross%3E3128836601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c219t-b9a841e1d0ea4c27489b590cdfdfa273bbd7c08d4c46ba97de32a3637274026c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3128836601&rft_id=info:pmid/&rft_ieee_id=10737420&rfr_iscdi=true