Loading…
Prompt-Driven Building Footprint Extraction in Aerial Images With Offset-Building Model
More accurate extraction of invisible building footprints from very-high-resolution (VHR) aerial images relies on roof segmentation and roof-to-footprint offset extraction. Existing methods based on instance segmentation suffer from poor generalization when extended to large-scale data production an...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-15 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c219t-b9a841e1d0ea4c27489b590cdfdfa273bbd7c08d4c46ba97de32a3637274026c3 |
container_end_page | 15 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Li, Kai Deng, Yupeng Kong, Yunlong Liu, Diyou Chen, Jingbo Meng, Yu Ma, Junxian Wang, Chenhao |
description | More accurate extraction of invisible building footprints from very-high-resolution (VHR) aerial images relies on roof segmentation and roof-to-footprint offset extraction. Existing methods based on instance segmentation suffer from poor generalization when extended to large-scale data production and fail to achieve low-cost human interaction. This prompt paradigm inspires us to design a promptable framework for roof and offset extraction, and transforms end-to-end algorithms into promptable methods. Within this framework, we propose a novel offset-building model (OBM). Based on prompt prediction, we first discover a common pattern of predicting offsets and tailored Distance-NMS (DNMS) algorithms for offset optimization. To rigorously evaluate the algorithm's capabilities, we introduce a prompt-based evaluation method, where our model reduces offset errors by 16.6% and improves roof Intersection over Union (IoU) by 10.8% compared to other models. Leveraging the common patterns in predicting offsets, DNMS algorithms enable models to further reduce offset vector loss (VL) by 6.5%. To further validate the generalization of models, we tested them using a newly proposed test set, Huizhou test set, with over 7,000 manually annotated instance samples. Our algorithms and dataset will be available at https://github.com/likaiucas/OBM . |
doi_str_mv | 10.1109/TGRS.2024.3487652 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3487652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10737420</ieee_id><sourcerecordid>3128836601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-b9a841e1d0ea4c27489b590cdfdfa273bbd7c08d4c46ba97de32a3637274026c3</originalsourceid><addsrcrecordid>eNpNkMtOAjEUQBujiYh-gImLJq4H-5o-lqiAJBiMYlhOOtMOlgxTbIvRv3cIxLi6m3PuzT0AXGM0wBipu8Xk9W1AEGEDyqTgOTkBPZznMkOcsVPQQ1jxjEhFzsFFjGuEMMux6IHlS_Cbbcoeg_uyLbzfuca4dgXH3qdtcG2Co-8UdJWcb6Fr4dAGpxs43eiVjXDp0gec13W0KftTn72xzSU4q3UT7dVx9sH7eLR4eMpm88n0YTjLKoJVykqlJcMWG2Q1q4hgUpW5QpWpTa2JoGVpRIWkYRXjpVbCWEo05VR0KCK8on1we9i7Df5zZ2Mq1n4X2u5kQTGRknKOcEfhA1UFH2OwddH9ttHhp8Co2Pcr9v2Kfb_i2K9zbg6Os9b-4wUVjCD6CyGXbFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128836601</pqid></control><display><type>article</type><title>Prompt-Driven Building Footprint Extraction in Aerial Images With Offset-Building Model</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Kai ; Deng, Yupeng ; Kong, Yunlong ; Liu, Diyou ; Chen, Jingbo ; Meng, Yu ; Ma, Junxian ; Wang, Chenhao</creator><creatorcontrib>Li, Kai ; Deng, Yupeng ; Kong, Yunlong ; Liu, Diyou ; Chen, Jingbo ; Meng, Yu ; Ma, Junxian ; Wang, Chenhao</creatorcontrib><description>More accurate extraction of invisible building footprints from very-high-resolution (VHR) aerial images relies on roof segmentation and roof-to-footprint offset extraction. Existing methods based on instance segmentation suffer from poor generalization when extended to large-scale data production and fail to achieve low-cost human interaction. This prompt paradigm inspires us to design a promptable framework for roof and offset extraction, and transforms end-to-end algorithms into promptable methods. Within this framework, we propose a novel offset-building model (OBM). Based on prompt prediction, we first discover a common pattern of predicting offsets and tailored Distance-NMS (DNMS) algorithms for offset optimization. To rigorously evaluate the algorithm's capabilities, we introduce a prompt-based evaluation method, where our model reduces offset errors by 16.6% and improves roof Intersection over Union (IoU) by 10.8% compared to other models. Leveraging the common patterns in predicting offsets, DNMS algorithms enable models to further reduce offset vector loss (VL) by 6.5%. To further validate the generalization of models, we tested them using a newly proposed test set, Huizhou test set, with over 7,000 manually annotated instance samples. Our algorithms and dataset will be available at https://github.com/likaiucas/OBM .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3487652</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Building footprint extraction (BFE) ; Buildings ; Data mining ; Data models ; Error reduction ; Feature extraction ; Image processing ; Image resolution ; Image segmentation ; Instance segmentation ; nonmaximum suppression (NMS) ; Offsets ; Prediction algorithms ; Predictions ; Production ; Remote sensing ; roof segmentation ; roof-to-footprint offset extraction ; segment anything model (SAM) ; Test sets ; Three-dimensional displays ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-b9a841e1d0ea4c27489b590cdfdfa273bbd7c08d4c46ba97de32a3637274026c3</cites><orcidid>0000-0002-7025-2137 ; 0000-0001-8396-0338 ; 0000-0001-7161-434X ; 0009-0001-4162-1925 ; 0000-0002-0644-3166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10737420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,4010,27904,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Deng, Yupeng</creatorcontrib><creatorcontrib>Kong, Yunlong</creatorcontrib><creatorcontrib>Liu, Diyou</creatorcontrib><creatorcontrib>Chen, Jingbo</creatorcontrib><creatorcontrib>Meng, Yu</creatorcontrib><creatorcontrib>Ma, Junxian</creatorcontrib><creatorcontrib>Wang, Chenhao</creatorcontrib><title>Prompt-Driven Building Footprint Extraction in Aerial Images With Offset-Building Model</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>More accurate extraction of invisible building footprints from very-high-resolution (VHR) aerial images relies on roof segmentation and roof-to-footprint offset extraction. Existing methods based on instance segmentation suffer from poor generalization when extended to large-scale data production and fail to achieve low-cost human interaction. This prompt paradigm inspires us to design a promptable framework for roof and offset extraction, and transforms end-to-end algorithms into promptable methods. Within this framework, we propose a novel offset-building model (OBM). Based on prompt prediction, we first discover a common pattern of predicting offsets and tailored Distance-NMS (DNMS) algorithms for offset optimization. To rigorously evaluate the algorithm's capabilities, we introduce a prompt-based evaluation method, where our model reduces offset errors by 16.6% and improves roof Intersection over Union (IoU) by 10.8% compared to other models. Leveraging the common patterns in predicting offsets, DNMS algorithms enable models to further reduce offset vector loss (VL) by 6.5%. To further validate the generalization of models, we tested them using a newly proposed test set, Huizhou test set, with over 7,000 manually annotated instance samples. Our algorithms and dataset will be available at https://github.com/likaiucas/OBM .</description><subject>Algorithms</subject><subject>Building footprint extraction (BFE)</subject><subject>Buildings</subject><subject>Data mining</subject><subject>Data models</subject><subject>Error reduction</subject><subject>Feature extraction</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Instance segmentation</subject><subject>nonmaximum suppression (NMS)</subject><subject>Offsets</subject><subject>Prediction algorithms</subject><subject>Predictions</subject><subject>Production</subject><subject>Remote sensing</subject><subject>roof segmentation</subject><subject>roof-to-footprint offset extraction</subject><subject>segment anything model (SAM)</subject><subject>Test sets</subject><subject>Three-dimensional displays</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOAjEUQBujiYh-gImLJq4H-5o-lqiAJBiMYlhOOtMOlgxTbIvRv3cIxLi6m3PuzT0AXGM0wBipu8Xk9W1AEGEDyqTgOTkBPZznMkOcsVPQQ1jxjEhFzsFFjGuEMMux6IHlS_Cbbcoeg_uyLbzfuca4dgXH3qdtcG2Co-8UdJWcb6Fr4dAGpxs43eiVjXDp0gec13W0KftTn72xzSU4q3UT7dVx9sH7eLR4eMpm88n0YTjLKoJVykqlJcMWG2Q1q4hgUpW5QpWpTa2JoGVpRIWkYRXjpVbCWEo05VR0KCK8on1we9i7Df5zZ2Mq1n4X2u5kQTGRknKOcEfhA1UFH2OwddH9ttHhp8Co2Pcr9v2Kfb_i2K9zbg6Os9b-4wUVjCD6CyGXbFY</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Kai</creator><creator>Deng, Yupeng</creator><creator>Kong, Yunlong</creator><creator>Liu, Diyou</creator><creator>Chen, Jingbo</creator><creator>Meng, Yu</creator><creator>Ma, Junxian</creator><creator>Wang, Chenhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7025-2137</orcidid><orcidid>https://orcid.org/0000-0001-8396-0338</orcidid><orcidid>https://orcid.org/0000-0001-7161-434X</orcidid><orcidid>https://orcid.org/0009-0001-4162-1925</orcidid><orcidid>https://orcid.org/0000-0002-0644-3166</orcidid></search><sort><creationdate>2024</creationdate><title>Prompt-Driven Building Footprint Extraction in Aerial Images With Offset-Building Model</title><author>Li, Kai ; Deng, Yupeng ; Kong, Yunlong ; Liu, Diyou ; Chen, Jingbo ; Meng, Yu ; Ma, Junxian ; Wang, Chenhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-b9a841e1d0ea4c27489b590cdfdfa273bbd7c08d4c46ba97de32a3637274026c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Building footprint extraction (BFE)</topic><topic>Buildings</topic><topic>Data mining</topic><topic>Data models</topic><topic>Error reduction</topic><topic>Feature extraction</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Instance segmentation</topic><topic>nonmaximum suppression (NMS)</topic><topic>Offsets</topic><topic>Prediction algorithms</topic><topic>Predictions</topic><topic>Production</topic><topic>Remote sensing</topic><topic>roof segmentation</topic><topic>roof-to-footprint offset extraction</topic><topic>segment anything model (SAM)</topic><topic>Test sets</topic><topic>Three-dimensional displays</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Kai</creatorcontrib><creatorcontrib>Deng, Yupeng</creatorcontrib><creatorcontrib>Kong, Yunlong</creatorcontrib><creatorcontrib>Liu, Diyou</creatorcontrib><creatorcontrib>Chen, Jingbo</creatorcontrib><creatorcontrib>Meng, Yu</creatorcontrib><creatorcontrib>Ma, Junxian</creatorcontrib><creatorcontrib>Wang, Chenhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Kai</au><au>Deng, Yupeng</au><au>Kong, Yunlong</au><au>Liu, Diyou</au><au>Chen, Jingbo</au><au>Meng, Yu</au><au>Ma, Junxian</au><au>Wang, Chenhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prompt-Driven Building Footprint Extraction in Aerial Images With Offset-Building Model</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>More accurate extraction of invisible building footprints from very-high-resolution (VHR) aerial images relies on roof segmentation and roof-to-footprint offset extraction. Existing methods based on instance segmentation suffer from poor generalization when extended to large-scale data production and fail to achieve low-cost human interaction. This prompt paradigm inspires us to design a promptable framework for roof and offset extraction, and transforms end-to-end algorithms into promptable methods. Within this framework, we propose a novel offset-building model (OBM). Based on prompt prediction, we first discover a common pattern of predicting offsets and tailored Distance-NMS (DNMS) algorithms for offset optimization. To rigorously evaluate the algorithm's capabilities, we introduce a prompt-based evaluation method, where our model reduces offset errors by 16.6% and improves roof Intersection over Union (IoU) by 10.8% compared to other models. Leveraging the common patterns in predicting offsets, DNMS algorithms enable models to further reduce offset vector loss (VL) by 6.5%. To further validate the generalization of models, we tested them using a newly proposed test set, Huizhou test set, with over 7,000 manually annotated instance samples. Our algorithms and dataset will be available at https://github.com/likaiucas/OBM .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3487652</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7025-2137</orcidid><orcidid>https://orcid.org/0000-0001-8396-0338</orcidid><orcidid>https://orcid.org/0000-0001-7161-434X</orcidid><orcidid>https://orcid.org/0009-0001-4162-1925</orcidid><orcidid>https://orcid.org/0000-0002-0644-3166</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2024_3487652 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Building footprint extraction (BFE) Buildings Data mining Data models Error reduction Feature extraction Image processing Image resolution Image segmentation Instance segmentation nonmaximum suppression (NMS) Offsets Prediction algorithms Predictions Production Remote sensing roof segmentation roof-to-footprint offset extraction segment anything model (SAM) Test sets Three-dimensional displays Training |
title | Prompt-Driven Building Footprint Extraction in Aerial Images With Offset-Building Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prompt-Driven%20Building%20Footprint%20Extraction%20in%20Aerial%20Images%20With%20Offset-Building%20Model&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Li,%20Kai&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3487652&rft_dat=%3Cproquest_cross%3E3128836601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c219t-b9a841e1d0ea4c27489b590cdfdfa273bbd7c08d4c46ba97de32a3637274026c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3128836601&rft_id=info:pmid/&rft_ieee_id=10737420&rfr_iscdi=true |