Loading…

LGRF-Net: A Novel Hybrid Attention Network for Lightweight Global Road Feature Extraction

In scenarios where road obstacles complicate feature extraction, designing a lightweight convolutional neural network (CNN) model with minimal parameters and flops while maintaining competitive segmentation accuracy poses one of the most challenging research tasks in remote sensing imaging. Finding...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-15
Main Authors: Duan, Yifei, Qu, Junsuo, Zhang, Le, Qu, Xiaochen, Yang, Dan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c148t-11119711addf753c38265aada494474138df11495d8e5ffd1f804908636006d63
container_end_page 15
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Duan, Yifei
Qu, Junsuo
Zhang, Le
Qu, Xiaochen
Yang, Dan
description In scenarios where road obstacles complicate feature extraction, designing a lightweight convolutional neural network (CNN) model with minimal parameters and flops while maintaining competitive segmentation accuracy poses one of the most challenging research tasks in remote sensing imaging. Finding the optimal balance between segmentation performance and computational efficiency is crucial. We introduce a novel method for global road feature extraction by strategically employing the light ghost basic block to develop a tiny-ghost link network (TG-LinkNet). A multiscale feature fusion (MSFF) module, which combines the parallel channel position attention mechanism (PCPAM) to deliver accurate road structure information, further supports the goal. We present a solution to the issue of feature fusion information retrieval-induced excessive redundant noise, which might cause serious interference. Furthermore, to efficiently extract edge features and capture long-distance reliance on global features, we create a global context feature extraction (GCFE) module, ultimately resulting in the lightweight global road feature extraction network (LGRF-Net). To facilitate efficient training, we implement a 1:2 weight design within our deep supervision technique, termed hybrid loss (weighted cross entropy (WCE)-Dice). Extensive experiments were conducted on the DeepGlobe ( 1024\times 1024 , 512\times 512 ) and SpaceNet road datasets. This demonstrates that our network possesses smaller parameters and flops compared to other road-based semantic segmentation methods.
doi_str_mv 10.1109/TGRS.2024.3491758
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2024_3491758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10744420</ieee_id><sourcerecordid>10_1109_TGRS_2024_3491758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-11119711addf753c38265aada494474138df11495d8e5ffd1f804908636006d63</originalsourceid><addsrcrecordid>eNpNkLFOwzAQhi0EEqXwAEgMfoEUX3xObLaqalOkqEilDEyRG9sQCDVyTEvfnkbtwA3_DXffP3yE3AIbATB1vyqWz6OUpTjiqCAX8owMQAiZsAzxnAwYqCxJpUovyVXXfTAGKCAfkNeyWM6ShY0PdEwXfmtbOt-vQ2PoOEa7iY3f0MN158MndT7Qsnl7jzvbJy1av9YtXXpt6Mzq-BMsnf7GoOseuyYXTredvTntIXmZTVeTeVI-FY-TcZnUgDImcBiVA2hjXC54zWWaCa2NRoWYI3BpHAAqYaQVzhlwkqFiMuMZY5nJ-JDAsbcOvuuCddV3aL502FfAqt5N1bupejfVyc2BuTsyjbX233-OiCnjf88uXw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LGRF-Net: A Novel Hybrid Attention Network for Lightweight Global Road Feature Extraction</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Duan, Yifei ; Qu, Junsuo ; Zhang, Le ; Qu, Xiaochen ; Yang, Dan</creator><creatorcontrib>Duan, Yifei ; Qu, Junsuo ; Zhang, Le ; Qu, Xiaochen ; Yang, Dan</creatorcontrib><description><![CDATA[In scenarios where road obstacles complicate feature extraction, designing a lightweight convolutional neural network (CNN) model with minimal parameters and flops while maintaining competitive segmentation accuracy poses one of the most challenging research tasks in remote sensing imaging. Finding the optimal balance between segmentation performance and computational efficiency is crucial. We introduce a novel method for global road feature extraction by strategically employing the light ghost basic block to develop a tiny-ghost link network (TG-LinkNet). A multiscale feature fusion (MSFF) module, which combines the parallel channel position attention mechanism (PCPAM) to deliver accurate road structure information, further supports the goal. We present a solution to the issue of feature fusion information retrieval-induced excessive redundant noise, which might cause serious interference. Furthermore, to efficiently extract edge features and capture long-distance reliance on global features, we create a global context feature extraction (GCFE) module, ultimately resulting in the lightweight global road feature extraction network (LGRF-Net). To facilitate efficient training, we implement a 1:2 weight design within our deep supervision technique, termed hybrid loss (weighted cross entropy (WCE)-Dice). Extensive experiments were conducted on the DeepGlobe (<inline-formula> <tex-math notation="LaTeX">1024\times 1024 </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">512\times 512 </tex-math></inline-formula>) and SpaceNet road datasets. This demonstrates that our network possesses smaller parameters and flops compared to other road-based semantic segmentation methods.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3491758</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Attention mechanisms ; Computational modeling ; Convolution ; Data mining ; Feature extraction ; Filters ; Global context feature extraction (GCFE) ; loss function ; multiscale feature fusion (MSFF) ; network efficiency enhancement ; Remote sensing ; remote sensing image ; Roads ; Telecommunications ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-11119711addf753c38265aada494474138df11495d8e5ffd1f804908636006d63</cites><orcidid>0000-0001-8058-0727 ; 0009-0003-6336-0513 ; 0000-0002-4781-260X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10744420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4022,27922,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Duan, Yifei</creatorcontrib><creatorcontrib>Qu, Junsuo</creatorcontrib><creatorcontrib>Zhang, Le</creatorcontrib><creatorcontrib>Qu, Xiaochen</creatorcontrib><creatorcontrib>Yang, Dan</creatorcontrib><title>LGRF-Net: A Novel Hybrid Attention Network for Lightweight Global Road Feature Extraction</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[In scenarios where road obstacles complicate feature extraction, designing a lightweight convolutional neural network (CNN) model with minimal parameters and flops while maintaining competitive segmentation accuracy poses one of the most challenging research tasks in remote sensing imaging. Finding the optimal balance between segmentation performance and computational efficiency is crucial. We introduce a novel method for global road feature extraction by strategically employing the light ghost basic block to develop a tiny-ghost link network (TG-LinkNet). A multiscale feature fusion (MSFF) module, which combines the parallel channel position attention mechanism (PCPAM) to deliver accurate road structure information, further supports the goal. We present a solution to the issue of feature fusion information retrieval-induced excessive redundant noise, which might cause serious interference. Furthermore, to efficiently extract edge features and capture long-distance reliance on global features, we create a global context feature extraction (GCFE) module, ultimately resulting in the lightweight global road feature extraction network (LGRF-Net). To facilitate efficient training, we implement a 1:2 weight design within our deep supervision technique, termed hybrid loss (weighted cross entropy (WCE)-Dice). Extensive experiments were conducted on the DeepGlobe (<inline-formula> <tex-math notation="LaTeX">1024\times 1024 </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">512\times 512 </tex-math></inline-formula>) and SpaceNet road datasets. This demonstrates that our network possesses smaller parameters and flops compared to other road-based semantic segmentation methods.]]></description><subject>Attention mechanisms</subject><subject>Computational modeling</subject><subject>Convolution</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Filters</subject><subject>Global context feature extraction (GCFE)</subject><subject>loss function</subject><subject>multiscale feature fusion (MSFF)</subject><subject>network efficiency enhancement</subject><subject>Remote sensing</subject><subject>remote sensing image</subject><subject>Roads</subject><subject>Telecommunications</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAQhi0EEqXwAEgMfoEUX3xObLaqalOkqEilDEyRG9sQCDVyTEvfnkbtwA3_DXffP3yE3AIbATB1vyqWz6OUpTjiqCAX8owMQAiZsAzxnAwYqCxJpUovyVXXfTAGKCAfkNeyWM6ShY0PdEwXfmtbOt-vQ2PoOEa7iY3f0MN158MndT7Qsnl7jzvbJy1av9YtXXpt6Mzq-BMsnf7GoOseuyYXTredvTntIXmZTVeTeVI-FY-TcZnUgDImcBiVA2hjXC54zWWaCa2NRoWYI3BpHAAqYaQVzhlwkqFiMuMZY5nJ-JDAsbcOvuuCddV3aL502FfAqt5N1bupejfVyc2BuTsyjbX233-OiCnjf88uXw8</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Duan, Yifei</creator><creator>Qu, Junsuo</creator><creator>Zhang, Le</creator><creator>Qu, Xiaochen</creator><creator>Yang, Dan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8058-0727</orcidid><orcidid>https://orcid.org/0009-0003-6336-0513</orcidid><orcidid>https://orcid.org/0000-0002-4781-260X</orcidid></search><sort><creationdate>2024</creationdate><title>LGRF-Net: A Novel Hybrid Attention Network for Lightweight Global Road Feature Extraction</title><author>Duan, Yifei ; Qu, Junsuo ; Zhang, Le ; Qu, Xiaochen ; Yang, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-11119711addf753c38265aada494474138df11495d8e5ffd1f804908636006d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attention mechanisms</topic><topic>Computational modeling</topic><topic>Convolution</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Filters</topic><topic>Global context feature extraction (GCFE)</topic><topic>loss function</topic><topic>multiscale feature fusion (MSFF)</topic><topic>network efficiency enhancement</topic><topic>Remote sensing</topic><topic>remote sensing image</topic><topic>Roads</topic><topic>Telecommunications</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Yifei</creatorcontrib><creatorcontrib>Qu, Junsuo</creatorcontrib><creatorcontrib>Zhang, Le</creatorcontrib><creatorcontrib>Qu, Xiaochen</creatorcontrib><creatorcontrib>Yang, Dan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Yifei</au><au>Qu, Junsuo</au><au>Zhang, Le</au><au>Qu, Xiaochen</au><au>Yang, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LGRF-Net: A Novel Hybrid Attention Network for Lightweight Global Road Feature Extraction</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[In scenarios where road obstacles complicate feature extraction, designing a lightweight convolutional neural network (CNN) model with minimal parameters and flops while maintaining competitive segmentation accuracy poses one of the most challenging research tasks in remote sensing imaging. Finding the optimal balance between segmentation performance and computational efficiency is crucial. We introduce a novel method for global road feature extraction by strategically employing the light ghost basic block to develop a tiny-ghost link network (TG-LinkNet). A multiscale feature fusion (MSFF) module, which combines the parallel channel position attention mechanism (PCPAM) to deliver accurate road structure information, further supports the goal. We present a solution to the issue of feature fusion information retrieval-induced excessive redundant noise, which might cause serious interference. Furthermore, to efficiently extract edge features and capture long-distance reliance on global features, we create a global context feature extraction (GCFE) module, ultimately resulting in the lightweight global road feature extraction network (LGRF-Net). To facilitate efficient training, we implement a 1:2 weight design within our deep supervision technique, termed hybrid loss (weighted cross entropy (WCE)-Dice). Extensive experiments were conducted on the DeepGlobe (<inline-formula> <tex-math notation="LaTeX">1024\times 1024 </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">512\times 512 </tex-math></inline-formula>) and SpaceNet road datasets. This demonstrates that our network possesses smaller parameters and flops compared to other road-based semantic segmentation methods.]]></abstract><pub>IEEE</pub><doi>10.1109/TGRS.2024.3491758</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8058-0727</orcidid><orcidid>https://orcid.org/0009-0003-6336-0513</orcidid><orcidid>https://orcid.org/0000-0002-4781-260X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2024_3491758
source IEEE Electronic Library (IEL) Journals
subjects Attention mechanisms
Computational modeling
Convolution
Data mining
Feature extraction
Filters
Global context feature extraction (GCFE)
loss function
multiscale feature fusion (MSFF)
network efficiency enhancement
Remote sensing
remote sensing image
Roads
Telecommunications
Training
title LGRF-Net: A Novel Hybrid Attention Network for Lightweight Global Road Feature Extraction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LGRF-Net:%20A%20Novel%20Hybrid%20Attention%20Network%20for%20Lightweight%20Global%20Road%20Feature%20Extraction&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Duan,%20Yifei&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3491758&rft_dat=%3Ccrossref_ieee_%3E10_1109_TGRS_2024_3491758%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c148t-11119711addf753c38265aada494474138df11495d8e5ffd1f804908636006d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10744420&rfr_iscdi=true