Loading…

A Unifying Theory of Driver Perception and Steering Control on Straight and Winding Roads

Novel driver support systems potentially enhance road safety by cooperating with the human driver. To optimize the design of emerging steering support systems, a profound understanding of driver steering behavior is required. This article proposes a new theory of driver steering, which unifies visua...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on human-machine systems 2020-04, Vol.50 (2), p.165-175
Main Authors: van der El, Kasper, Pool, Daan M., van Paassen, Marinus Rene M., Mulder, Max
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Novel driver support systems potentially enhance road safety by cooperating with the human driver. To optimize the design of emerging steering support systems, a profound understanding of driver steering behavior is required. This article proposes a new theory of driver steering, which unifies visual perception and control models. The theory is derived directly from measured steering data, without any a priori assumptions on driver inputs or control dynamics. Results of a human-in-the-loop simulator experiment are presented, in which drivers tracked the centerline of straight and winding roads. Multiloop frequency response function (FRF) estimates reveal how drivers use visual preview, lateral position feedback, and heading feedback for control. Classical control theory is used to model all three FRF estimates. The model has physically interpretable parameters, which indicate that drivers minimize the bearing angle to an "aim point" (located 0.25-0.75 s ahead) through simple compensatory control, both on straight and winding roads. The resulting unifying perception and control theory provides a new tool for rationalizing driver steering behavior, and for optimizing modern steering support systems.
ISSN:2168-2291
2168-2305
DOI:10.1109/THMS.2019.2947551