Loading…

A New Perspective on the PM Vernier Machine Mechanism

Permanent magnet vernier (PMV) machines have attracted more and more attention for their merits of high torque density and simple structure. Also, the principle of electromechanical energy conversion is the most common way to investigate the PMV machine by calculating back electromotive force and el...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications 2019-03, Vol.55 (2), p.1420-1429
Main Authors: Xie, Kangfu, Li, Dawei, Qu, Ronghai, Ren, Xiang, Shah, Manoj R., Pan, Yuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-a2e2f0743d596423557481bf17c737adc4d092a4ec66b95704a87c36ac5a533b3
cites cdi_FETCH-LOGICAL-c291t-a2e2f0743d596423557481bf17c737adc4d092a4ec66b95704a87c36ac5a533b3
container_end_page 1429
container_issue 2
container_start_page 1420
container_title IEEE transactions on industry applications
container_volume 55
creator Xie, Kangfu
Li, Dawei
Qu, Ronghai
Ren, Xiang
Shah, Manoj R.
Pan, Yuan
description Permanent magnet vernier (PMV) machines have attracted more and more attention for their merits of high torque density and simple structure. Also, the principle of electromechanical energy conversion is the most common way to investigate the PMV machine by calculating back electromotive force and electromagnetic torque. In this paper, a new perspective on the mechanism of PMV machines based on the Maxwell stress tensor method is presented to deepen the insight into the reason why the force on the rotor of a PMV machine is larger than that of an surface permanent magnet (SPM) machine. Based on the finite element analysis (FEA) method, three machines with exactly the same rotor are analyzed and compared, namely 24-slot/20-pole SPM, 12-slot/20-pole surface PMV, and 6-slot/20-pole split-tooth PMV machines. The radial and tangential flux densities and force distributions along the airgap are illustrated. The influence of pole ratio on the performance of PMV machines is also investigated. It is shown that the improvement of tangential flux density in the PMV machine plays a primary role in the higher torque density, which shows a promising way to improve the torque density of machines.
doi_str_mv 10.1109/TIA.2018.2880144
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2018_2880144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8526320</ieee_id><sourcerecordid>2191266682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a2e2f0743d596423557481bf17c737adc4d092a4ec66b95704a87c36ac5a533b3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dS8k7ssxUeho11UtyFN79ApdqYmU8V_75QWV2fznXPgI-SWsxHnDB4W0_FIMO5GwjnGlTojAw4SCpDGnpMBYyALAFCX5CrnDesRzdWA6DF9xR86x5R3GLv6G2nb0G6NdF7SD0xNjYmWIa7rBmmJcR2aOm-vyUUVPjPenHJI3p8eF5OXYvb2PJ2MZ0UUwLsiCBQVs0quNBglpNZWOb6suI1W2rCKasVABIXRmCVoy1RwNkoTog5ayqUckvvj7i61X3vMnd-0-9T0l15w4MIY40RPsSMVU5tzwsrvUr0N6ddz5g9yfC_HH-T4k5y-cnes1Ij4jzstjBRM_gE26F0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191266682</pqid></control><display><type>article</type><title>A New Perspective on the PM Vernier Machine Mechanism</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xie, Kangfu ; Li, Dawei ; Qu, Ronghai ; Ren, Xiang ; Shah, Manoj R. ; Pan, Yuan</creator><creatorcontrib>Xie, Kangfu ; Li, Dawei ; Qu, Ronghai ; Ren, Xiang ; Shah, Manoj R. ; Pan, Yuan</creatorcontrib><description>Permanent magnet vernier (PMV) machines have attracted more and more attention for their merits of high torque density and simple structure. Also, the principle of electromechanical energy conversion is the most common way to investigate the PMV machine by calculating back electromotive force and electromagnetic torque. In this paper, a new perspective on the mechanism of PMV machines based on the Maxwell stress tensor method is presented to deepen the insight into the reason why the force on the rotor of a PMV machine is larger than that of an surface permanent magnet (SPM) machine. Based on the finite element analysis (FEA) method, three machines with exactly the same rotor are analyzed and compared, namely 24-slot/20-pole SPM, 12-slot/20-pole surface PMV, and 6-slot/20-pole split-tooth PMV machines. The radial and tangential flux densities and force distributions along the airgap are illustrated. The influence of pole ratio on the performance of PMV machines is also investigated. It is shown that the improvement of tangential flux density in the PMV machine plays a primary role in the higher torque density, which shows a promising way to improve the torque density of machines.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2018.2880144</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Back electromotive force ; Electromotive forces ; Energy conversion ; Finite element method ; Flux density ; Force ; Harmonic analysis ; Magnetic flux ; Mathematical analysis ; Maxwell stress tensor (MST) method ; permanent magnet (PM) ; Permanent magnets ; Rotors ; Tensors ; Torque ; torque generation ; vernier machine ; Windings</subject><ispartof>IEEE transactions on industry applications, 2019-03, Vol.55 (2), p.1420-1429</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a2e2f0743d596423557481bf17c737adc4d092a4ec66b95704a87c36ac5a533b3</citedby><cites>FETCH-LOGICAL-c291t-a2e2f0743d596423557481bf17c737adc4d092a4ec66b95704a87c36ac5a533b3</cites><orcidid>0000-0002-7574-0420 ; 0000-0001-6375-0990 ; 0000-0002-2120-3064 ; 0000-0002-9048-5229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8526320$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Xie, Kangfu</creatorcontrib><creatorcontrib>Li, Dawei</creatorcontrib><creatorcontrib>Qu, Ronghai</creatorcontrib><creatorcontrib>Ren, Xiang</creatorcontrib><creatorcontrib>Shah, Manoj R.</creatorcontrib><creatorcontrib>Pan, Yuan</creatorcontrib><title>A New Perspective on the PM Vernier Machine Mechanism</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Permanent magnet vernier (PMV) machines have attracted more and more attention for their merits of high torque density and simple structure. Also, the principle of electromechanical energy conversion is the most common way to investigate the PMV machine by calculating back electromotive force and electromagnetic torque. In this paper, a new perspective on the mechanism of PMV machines based on the Maxwell stress tensor method is presented to deepen the insight into the reason why the force on the rotor of a PMV machine is larger than that of an surface permanent magnet (SPM) machine. Based on the finite element analysis (FEA) method, three machines with exactly the same rotor are analyzed and compared, namely 24-slot/20-pole SPM, 12-slot/20-pole surface PMV, and 6-slot/20-pole split-tooth PMV machines. The radial and tangential flux densities and force distributions along the airgap are illustrated. The influence of pole ratio on the performance of PMV machines is also investigated. It is shown that the improvement of tangential flux density in the PMV machine plays a primary role in the higher torque density, which shows a promising way to improve the torque density of machines.</description><subject>Back electromotive force</subject><subject>Electromotive forces</subject><subject>Energy conversion</subject><subject>Finite element method</subject><subject>Flux density</subject><subject>Force</subject><subject>Harmonic analysis</subject><subject>Magnetic flux</subject><subject>Mathematical analysis</subject><subject>Maxwell stress tensor (MST) method</subject><subject>permanent magnet (PM)</subject><subject>Permanent magnets</subject><subject>Rotors</subject><subject>Tensors</subject><subject>Torque</subject><subject>torque generation</subject><subject>vernier machine</subject><subject>Windings</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dS8k7ssxUeho11UtyFN79ApdqYmU8V_75QWV2fznXPgI-SWsxHnDB4W0_FIMO5GwjnGlTojAw4SCpDGnpMBYyALAFCX5CrnDesRzdWA6DF9xR86x5R3GLv6G2nb0G6NdF7SD0xNjYmWIa7rBmmJcR2aOm-vyUUVPjPenHJI3p8eF5OXYvb2PJ2MZ0UUwLsiCBQVs0quNBglpNZWOb6suI1W2rCKasVABIXRmCVoy1RwNkoTog5ayqUckvvj7i61X3vMnd-0-9T0l15w4MIY40RPsSMVU5tzwsrvUr0N6ddz5g9yfC_HH-T4k5y-cnes1Ij4jzstjBRM_gE26F0g</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Xie, Kangfu</creator><creator>Li, Dawei</creator><creator>Qu, Ronghai</creator><creator>Ren, Xiang</creator><creator>Shah, Manoj R.</creator><creator>Pan, Yuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7574-0420</orcidid><orcidid>https://orcid.org/0000-0001-6375-0990</orcidid><orcidid>https://orcid.org/0000-0002-2120-3064</orcidid><orcidid>https://orcid.org/0000-0002-9048-5229</orcidid></search><sort><creationdate>201903</creationdate><title>A New Perspective on the PM Vernier Machine Mechanism</title><author>Xie, Kangfu ; Li, Dawei ; Qu, Ronghai ; Ren, Xiang ; Shah, Manoj R. ; Pan, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a2e2f0743d596423557481bf17c737adc4d092a4ec66b95704a87c36ac5a533b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Back electromotive force</topic><topic>Electromotive forces</topic><topic>Energy conversion</topic><topic>Finite element method</topic><topic>Flux density</topic><topic>Force</topic><topic>Harmonic analysis</topic><topic>Magnetic flux</topic><topic>Mathematical analysis</topic><topic>Maxwell stress tensor (MST) method</topic><topic>permanent magnet (PM)</topic><topic>Permanent magnets</topic><topic>Rotors</topic><topic>Tensors</topic><topic>Torque</topic><topic>torque generation</topic><topic>vernier machine</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Kangfu</creatorcontrib><creatorcontrib>Li, Dawei</creatorcontrib><creatorcontrib>Qu, Ronghai</creatorcontrib><creatorcontrib>Ren, Xiang</creatorcontrib><creatorcontrib>Shah, Manoj R.</creatorcontrib><creatorcontrib>Pan, Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Kangfu</au><au>Li, Dawei</au><au>Qu, Ronghai</au><au>Ren, Xiang</au><au>Shah, Manoj R.</au><au>Pan, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Perspective on the PM Vernier Machine Mechanism</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2019-03</date><risdate>2019</risdate><volume>55</volume><issue>2</issue><spage>1420</spage><epage>1429</epage><pages>1420-1429</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Permanent magnet vernier (PMV) machines have attracted more and more attention for their merits of high torque density and simple structure. Also, the principle of electromechanical energy conversion is the most common way to investigate the PMV machine by calculating back electromotive force and electromagnetic torque. In this paper, a new perspective on the mechanism of PMV machines based on the Maxwell stress tensor method is presented to deepen the insight into the reason why the force on the rotor of a PMV machine is larger than that of an surface permanent magnet (SPM) machine. Based on the finite element analysis (FEA) method, three machines with exactly the same rotor are analyzed and compared, namely 24-slot/20-pole SPM, 12-slot/20-pole surface PMV, and 6-slot/20-pole split-tooth PMV machines. The radial and tangential flux densities and force distributions along the airgap are illustrated. The influence of pole ratio on the performance of PMV machines is also investigated. It is shown that the improvement of tangential flux density in the PMV machine plays a primary role in the higher torque density, which shows a promising way to improve the torque density of machines.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2018.2880144</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7574-0420</orcidid><orcidid>https://orcid.org/0000-0001-6375-0990</orcidid><orcidid>https://orcid.org/0000-0002-2120-3064</orcidid><orcidid>https://orcid.org/0000-0002-9048-5229</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2019-03, Vol.55 (2), p.1420-1429
issn 0093-9994
1939-9367
language eng
recordid cdi_crossref_primary_10_1109_TIA_2018_2880144
source IEEE Electronic Library (IEL) Journals
subjects Back electromotive force
Electromotive forces
Energy conversion
Finite element method
Flux density
Force
Harmonic analysis
Magnetic flux
Mathematical analysis
Maxwell stress tensor (MST) method
permanent magnet (PM)
Permanent magnets
Rotors
Tensors
Torque
torque generation
vernier machine
Windings
title A New Perspective on the PM Vernier Machine Mechanism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Perspective%20on%20the%20PM%20Vernier%20Machine%20Mechanism&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Xie,%20Kangfu&rft.date=2019-03&rft.volume=55&rft.issue=2&rft.spage=1420&rft.epage=1429&rft.pages=1420-1429&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2018.2880144&rft_dat=%3Cproquest_cross%3E2191266682%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-a2e2f0743d596423557481bf17c737adc4d092a4ec66b95704a87c36ac5a533b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2191266682&rft_id=info:pmid/&rft_ieee_id=8526320&rfr_iscdi=true