Loading…
A New Perspective on the PM Vernier Machine Mechanism
Permanent magnet vernier (PMV) machines have attracted more and more attention for their merits of high torque density and simple structure. Also, the principle of electromechanical energy conversion is the most common way to investigate the PMV machine by calculating back electromotive force and el...
Saved in:
Published in: | IEEE transactions on industry applications 2019-03, Vol.55 (2), p.1420-1429 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-a2e2f0743d596423557481bf17c737adc4d092a4ec66b95704a87c36ac5a533b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-a2e2f0743d596423557481bf17c737adc4d092a4ec66b95704a87c36ac5a533b3 |
container_end_page | 1429 |
container_issue | 2 |
container_start_page | 1420 |
container_title | IEEE transactions on industry applications |
container_volume | 55 |
creator | Xie, Kangfu Li, Dawei Qu, Ronghai Ren, Xiang Shah, Manoj R. Pan, Yuan |
description | Permanent magnet vernier (PMV) machines have attracted more and more attention for their merits of high torque density and simple structure. Also, the principle of electromechanical energy conversion is the most common way to investigate the PMV machine by calculating back electromotive force and electromagnetic torque. In this paper, a new perspective on the mechanism of PMV machines based on the Maxwell stress tensor method is presented to deepen the insight into the reason why the force on the rotor of a PMV machine is larger than that of an surface permanent magnet (SPM) machine. Based on the finite element analysis (FEA) method, three machines with exactly the same rotor are analyzed and compared, namely 24-slot/20-pole SPM, 12-slot/20-pole surface PMV, and 6-slot/20-pole split-tooth PMV machines. The radial and tangential flux densities and force distributions along the airgap are illustrated. The influence of pole ratio on the performance of PMV machines is also investigated. It is shown that the improvement of tangential flux density in the PMV machine plays a primary role in the higher torque density, which shows a promising way to improve the torque density of machines. |
doi_str_mv | 10.1109/TIA.2018.2880144 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2018_2880144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8526320</ieee_id><sourcerecordid>2191266682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a2e2f0743d596423557481bf17c737adc4d092a4ec66b95704a87c36ac5a533b3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dS8k7ssxUeho11UtyFN79ApdqYmU8V_75QWV2fznXPgI-SWsxHnDB4W0_FIMO5GwjnGlTojAw4SCpDGnpMBYyALAFCX5CrnDesRzdWA6DF9xR86x5R3GLv6G2nb0G6NdF7SD0xNjYmWIa7rBmmJcR2aOm-vyUUVPjPenHJI3p8eF5OXYvb2PJ2MZ0UUwLsiCBQVs0quNBglpNZWOb6suI1W2rCKasVABIXRmCVoy1RwNkoTog5ayqUckvvj7i61X3vMnd-0-9T0l15w4MIY40RPsSMVU5tzwsrvUr0N6ddz5g9yfC_HH-T4k5y-cnes1Ij4jzstjBRM_gE26F0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191266682</pqid></control><display><type>article</type><title>A New Perspective on the PM Vernier Machine Mechanism</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Xie, Kangfu ; Li, Dawei ; Qu, Ronghai ; Ren, Xiang ; Shah, Manoj R. ; Pan, Yuan</creator><creatorcontrib>Xie, Kangfu ; Li, Dawei ; Qu, Ronghai ; Ren, Xiang ; Shah, Manoj R. ; Pan, Yuan</creatorcontrib><description>Permanent magnet vernier (PMV) machines have attracted more and more attention for their merits of high torque density and simple structure. Also, the principle of electromechanical energy conversion is the most common way to investigate the PMV machine by calculating back electromotive force and electromagnetic torque. In this paper, a new perspective on the mechanism of PMV machines based on the Maxwell stress tensor method is presented to deepen the insight into the reason why the force on the rotor of a PMV machine is larger than that of an surface permanent magnet (SPM) machine. Based on the finite element analysis (FEA) method, three machines with exactly the same rotor are analyzed and compared, namely 24-slot/20-pole SPM, 12-slot/20-pole surface PMV, and 6-slot/20-pole split-tooth PMV machines. The radial and tangential flux densities and force distributions along the airgap are illustrated. The influence of pole ratio on the performance of PMV machines is also investigated. It is shown that the improvement of tangential flux density in the PMV machine plays a primary role in the higher torque density, which shows a promising way to improve the torque density of machines.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2018.2880144</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Back electromotive force ; Electromotive forces ; Energy conversion ; Finite element method ; Flux density ; Force ; Harmonic analysis ; Magnetic flux ; Mathematical analysis ; Maxwell stress tensor (MST) method ; permanent magnet (PM) ; Permanent magnets ; Rotors ; Tensors ; Torque ; torque generation ; vernier machine ; Windings</subject><ispartof>IEEE transactions on industry applications, 2019-03, Vol.55 (2), p.1420-1429</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a2e2f0743d596423557481bf17c737adc4d092a4ec66b95704a87c36ac5a533b3</citedby><cites>FETCH-LOGICAL-c291t-a2e2f0743d596423557481bf17c737adc4d092a4ec66b95704a87c36ac5a533b3</cites><orcidid>0000-0002-7574-0420 ; 0000-0001-6375-0990 ; 0000-0002-2120-3064 ; 0000-0002-9048-5229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8526320$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Xie, Kangfu</creatorcontrib><creatorcontrib>Li, Dawei</creatorcontrib><creatorcontrib>Qu, Ronghai</creatorcontrib><creatorcontrib>Ren, Xiang</creatorcontrib><creatorcontrib>Shah, Manoj R.</creatorcontrib><creatorcontrib>Pan, Yuan</creatorcontrib><title>A New Perspective on the PM Vernier Machine Mechanism</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Permanent magnet vernier (PMV) machines have attracted more and more attention for their merits of high torque density and simple structure. Also, the principle of electromechanical energy conversion is the most common way to investigate the PMV machine by calculating back electromotive force and electromagnetic torque. In this paper, a new perspective on the mechanism of PMV machines based on the Maxwell stress tensor method is presented to deepen the insight into the reason why the force on the rotor of a PMV machine is larger than that of an surface permanent magnet (SPM) machine. Based on the finite element analysis (FEA) method, three machines with exactly the same rotor are analyzed and compared, namely 24-slot/20-pole SPM, 12-slot/20-pole surface PMV, and 6-slot/20-pole split-tooth PMV machines. The radial and tangential flux densities and force distributions along the airgap are illustrated. The influence of pole ratio on the performance of PMV machines is also investigated. It is shown that the improvement of tangential flux density in the PMV machine plays a primary role in the higher torque density, which shows a promising way to improve the torque density of machines.</description><subject>Back electromotive force</subject><subject>Electromotive forces</subject><subject>Energy conversion</subject><subject>Finite element method</subject><subject>Flux density</subject><subject>Force</subject><subject>Harmonic analysis</subject><subject>Magnetic flux</subject><subject>Mathematical analysis</subject><subject>Maxwell stress tensor (MST) method</subject><subject>permanent magnet (PM)</subject><subject>Permanent magnets</subject><subject>Rotors</subject><subject>Tensors</subject><subject>Torque</subject><subject>torque generation</subject><subject>vernier machine</subject><subject>Windings</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dS8k7ssxUeho11UtyFN79ApdqYmU8V_75QWV2fznXPgI-SWsxHnDB4W0_FIMO5GwjnGlTojAw4SCpDGnpMBYyALAFCX5CrnDesRzdWA6DF9xR86x5R3GLv6G2nb0G6NdF7SD0xNjYmWIa7rBmmJcR2aOm-vyUUVPjPenHJI3p8eF5OXYvb2PJ2MZ0UUwLsiCBQVs0quNBglpNZWOb6suI1W2rCKasVABIXRmCVoy1RwNkoTog5ayqUckvvj7i61X3vMnd-0-9T0l15w4MIY40RPsSMVU5tzwsrvUr0N6ddz5g9yfC_HH-T4k5y-cnes1Ij4jzstjBRM_gE26F0g</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Xie, Kangfu</creator><creator>Li, Dawei</creator><creator>Qu, Ronghai</creator><creator>Ren, Xiang</creator><creator>Shah, Manoj R.</creator><creator>Pan, Yuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7574-0420</orcidid><orcidid>https://orcid.org/0000-0001-6375-0990</orcidid><orcidid>https://orcid.org/0000-0002-2120-3064</orcidid><orcidid>https://orcid.org/0000-0002-9048-5229</orcidid></search><sort><creationdate>201903</creationdate><title>A New Perspective on the PM Vernier Machine Mechanism</title><author>Xie, Kangfu ; Li, Dawei ; Qu, Ronghai ; Ren, Xiang ; Shah, Manoj R. ; Pan, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a2e2f0743d596423557481bf17c737adc4d092a4ec66b95704a87c36ac5a533b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Back electromotive force</topic><topic>Electromotive forces</topic><topic>Energy conversion</topic><topic>Finite element method</topic><topic>Flux density</topic><topic>Force</topic><topic>Harmonic analysis</topic><topic>Magnetic flux</topic><topic>Mathematical analysis</topic><topic>Maxwell stress tensor (MST) method</topic><topic>permanent magnet (PM)</topic><topic>Permanent magnets</topic><topic>Rotors</topic><topic>Tensors</topic><topic>Torque</topic><topic>torque generation</topic><topic>vernier machine</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Kangfu</creatorcontrib><creatorcontrib>Li, Dawei</creatorcontrib><creatorcontrib>Qu, Ronghai</creatorcontrib><creatorcontrib>Ren, Xiang</creatorcontrib><creatorcontrib>Shah, Manoj R.</creatorcontrib><creatorcontrib>Pan, Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Kangfu</au><au>Li, Dawei</au><au>Qu, Ronghai</au><au>Ren, Xiang</au><au>Shah, Manoj R.</au><au>Pan, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Perspective on the PM Vernier Machine Mechanism</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2019-03</date><risdate>2019</risdate><volume>55</volume><issue>2</issue><spage>1420</spage><epage>1429</epage><pages>1420-1429</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Permanent magnet vernier (PMV) machines have attracted more and more attention for their merits of high torque density and simple structure. Also, the principle of electromechanical energy conversion is the most common way to investigate the PMV machine by calculating back electromotive force and electromagnetic torque. In this paper, a new perspective on the mechanism of PMV machines based on the Maxwell stress tensor method is presented to deepen the insight into the reason why the force on the rotor of a PMV machine is larger than that of an surface permanent magnet (SPM) machine. Based on the finite element analysis (FEA) method, three machines with exactly the same rotor are analyzed and compared, namely 24-slot/20-pole SPM, 12-slot/20-pole surface PMV, and 6-slot/20-pole split-tooth PMV machines. The radial and tangential flux densities and force distributions along the airgap are illustrated. The influence of pole ratio on the performance of PMV machines is also investigated. It is shown that the improvement of tangential flux density in the PMV machine plays a primary role in the higher torque density, which shows a promising way to improve the torque density of machines.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2018.2880144</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7574-0420</orcidid><orcidid>https://orcid.org/0000-0001-6375-0990</orcidid><orcidid>https://orcid.org/0000-0002-2120-3064</orcidid><orcidid>https://orcid.org/0000-0002-9048-5229</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2019-03, Vol.55 (2), p.1420-1429 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIA_2018_2880144 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Back electromotive force Electromotive forces Energy conversion Finite element method Flux density Force Harmonic analysis Magnetic flux Mathematical analysis Maxwell stress tensor (MST) method permanent magnet (PM) Permanent magnets Rotors Tensors Torque torque generation vernier machine Windings |
title | A New Perspective on the PM Vernier Machine Mechanism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Perspective%20on%20the%20PM%20Vernier%20Machine%20Mechanism&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Xie,%20Kangfu&rft.date=2019-03&rft.volume=55&rft.issue=2&rft.spage=1420&rft.epage=1429&rft.pages=1420-1429&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2018.2880144&rft_dat=%3Cproquest_cross%3E2191266682%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-a2e2f0743d596423557481bf17c737adc4d092a4ec66b95704a87c36ac5a533b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2191266682&rft_id=info:pmid/&rft_ieee_id=8526320&rfr_iscdi=true |