Loading…
Multiple Home-to-Home Energy Transactions for Peak Load Shaving
This article proposes a new technique to manage the domestic peak load demand through peer-to-peer energy transaction among multiple homes. In this process, the houses willing to sell energy are identified as the Parent, and the houses that require energy are identified as a Child. The parents havin...
Saved in:
Published in: | IEEE transactions on industry applications 2020-03, Vol.56 (2), p.1074-1085 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article proposes a new technique to manage the domestic peak load demand through peer-to-peer energy transaction among multiple homes. In this process, the houses willing to sell energy are identified as the Parent, and the houses that require energy are identified as a Child. The parents having energy resources such as photovoltaics, battery storage and electric vehicles will utilize their resources to meet their peak power demand and sell the extra energy to a child. A mixed integer linear programming optimization is used to find the parent-child matching based on their energy availability, power demand, and distances. After selecting the parent-child match, the power demand of a child is forecasted using two different techniques, i.e., autoregressive moving average and artificial neural networks, to identify to child's need in a day ahead of the actual operation. The proposed algorithm calculates the available energy of a parent to sell in real-time and the required energy of a child in a day-ahead, while ensuring to minimize the peak load demand. The proposed method, as confirmed by the presented analysis using data of a real Australian power distribution network, is able to significantly minimize the peak load demand, which in-turn is expected to minimize the electricity costs. The method also facilitates two agreed prosumers to transact energy between themselves without the involvement of a third party. |
---|---|
ISSN: | 0093-9994 1939-9367 |
DOI: | 10.1109/TIA.2020.2964593 |