Loading…

A Machine Learning Based Methodology for Load Profiles Clustering and Non-Residential Buildings Benchmarking

Buildings benchmarking based on their electric profiles is a fundamental step to identify, evaluate and then possibly implement energy efficiency oriented actions. Indeed, benchmarking enables comparison among peer buildings or industrial sites and the identification of reference cases, either effic...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications 2023-05, Vol.59 (3), p.2963-2973
Main Authors: Eiraudo, Simone, Barbierato, Luca, Giannantonio, Roberta, Porta, Alessandro, Lanzini, Andrea, Borchiellini, Romano, Macii, Enrico, Patti, Edoardo, Bottaccioli, Lorenzo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-15f4709371cc4066e4caaae6a3cf2ea70aa6ae97d7a99aee52450057e77841453
cites cdi_FETCH-LOGICAL-c334t-15f4709371cc4066e4caaae6a3cf2ea70aa6ae97d7a99aee52450057e77841453
container_end_page 2973
container_issue 3
container_start_page 2963
container_title IEEE transactions on industry applications
container_volume 59
creator Eiraudo, Simone
Barbierato, Luca
Giannantonio, Roberta
Porta, Alessandro
Lanzini, Andrea
Borchiellini, Romano
Macii, Enrico
Patti, Edoardo
Bottaccioli, Lorenzo
description Buildings benchmarking based on their electric profiles is a fundamental step to identify, evaluate and then possibly implement energy efficiency oriented actions. Indeed, benchmarking enables comparison among peer buildings or industrial sites and the identification of reference cases, either efficient and inefficient ones. In this regard, temporal data clustering is an effective and widely applicable benchmarking tool. In this work, we propose a novel Machine Learning based methodology, taking advantage of two fundamental tools, namely a decomposition algorithm and a clustering one. Several clustering algorithms have been tested to identify k-Means as the most suitable one. The proposed methodology includes the evaluation of energy Key Performance Indicators for effective analysis and comparison of buildings. The proposed framework has been tested on a real-world case study including around 2000 non-residential buildings. The classification of buildings based on K-Means achieved an accuracy of 99.7% with respect to their usage category. Furthermore, reference Key Performance Indicator values for each cluster are obtained and discussed to understand buildings' energy behaviour and possible reasons for inefficiencies.
doi_str_mv 10.1109/TIA.2023.3240669
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2023_3240669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10032778</ieee_id><sourcerecordid>2815684289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-15f4709371cc4066e4caaae6a3cf2ea70aa6ae97d7a99aee52450057e77841453</originalsourceid><addsrcrecordid>eNpNUD1PwzAQtRBIlMLOwGCJOcWOnTge24ovKQWEymydkkubEuxiJ0P_PY7agel0uvfufRByy9mMc6Yf1q_zWcpSMROpZHmuz8iEa6ETLXJ1TiaMaZForeUluQphxxiXGZcT0s3pCqpta5GWCN62dkMXELCmK-y3rnad2xxo4zwtHdT0w7um7TDQZTeEHv0IB1vTN2eTTwxtjbZvoaOLoe3qeAx0gbba_oD_jts1uWigC3hzmlPy9fS4Xr4k5fvz63JeJpUQsk941kgV_SpeVWMWlBUAYA6ialIExQByQK1qBVoDYpbKjLFMoVKFjLnElNwf_-69-x0w9GbnBm-jpEkLnuWFTAsdUeyIqrwLwWNj9r6NTg-GMzN2amKnZuzUnDqNlLsjpUXEf3Am0qgt_gBdwXLv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815684289</pqid></control><display><type>article</type><title>A Machine Learning Based Methodology for Load Profiles Clustering and Non-Residential Buildings Benchmarking</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Eiraudo, Simone ; Barbierato, Luca ; Giannantonio, Roberta ; Porta, Alessandro ; Lanzini, Andrea ; Borchiellini, Romano ; Macii, Enrico ; Patti, Edoardo ; Bottaccioli, Lorenzo</creator><creatorcontrib>Eiraudo, Simone ; Barbierato, Luca ; Giannantonio, Roberta ; Porta, Alessandro ; Lanzini, Andrea ; Borchiellini, Romano ; Macii, Enrico ; Patti, Edoardo ; Bottaccioli, Lorenzo</creatorcontrib><description>Buildings benchmarking based on their electric profiles is a fundamental step to identify, evaluate and then possibly implement energy efficiency oriented actions. Indeed, benchmarking enables comparison among peer buildings or industrial sites and the identification of reference cases, either efficient and inefficient ones. In this regard, temporal data clustering is an effective and widely applicable benchmarking tool. In this work, we propose a novel Machine Learning based methodology, taking advantage of two fundamental tools, namely a decomposition algorithm and a clustering one. Several clustering algorithms have been tested to identify k-Means as the most suitable one. The proposed methodology includes the evaluation of energy Key Performance Indicators for effective analysis and comparison of buildings. The proposed framework has been tested on a real-world case study including around 2000 non-residential buildings. The classification of buildings based on K-Means achieved an accuracy of 99.7% with respect to their usage category. Furthermore, reference Key Performance Indicator values for each cluster are obtained and discussed to understand buildings' energy behaviour and possible reasons for inefficiencies.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2023.3240669</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Benchmark testing ; benchmarking ; Benchmarks ; Buildings ; Business metrics ; Clustering ; Clustering algorithms ; Energy efficiency ; Energy measurement ; Key performance indicator ; Machine learning ; Methodology ; non-residential buildings ; Nonresidential buildings ; Task analysis</subject><ispartof>IEEE transactions on industry applications, 2023-05, Vol.59 (3), p.2963-2973</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-15f4709371cc4066e4caaae6a3cf2ea70aa6ae97d7a99aee52450057e77841453</citedby><cites>FETCH-LOGICAL-c334t-15f4709371cc4066e4caaae6a3cf2ea70aa6ae97d7a99aee52450057e77841453</cites><orcidid>0000-0003-4688-8212 ; 0000-0002-6043-6477 ; 0000-0001-6470-3299 ; 0000-0001-9046-5618 ; 0000-0001-6011-3929 ; 0000-0001-9831-2317 ; 0000-0001-7445-3975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10032778$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml></links><search><creatorcontrib>Eiraudo, Simone</creatorcontrib><creatorcontrib>Barbierato, Luca</creatorcontrib><creatorcontrib>Giannantonio, Roberta</creatorcontrib><creatorcontrib>Porta, Alessandro</creatorcontrib><creatorcontrib>Lanzini, Andrea</creatorcontrib><creatorcontrib>Borchiellini, Romano</creatorcontrib><creatorcontrib>Macii, Enrico</creatorcontrib><creatorcontrib>Patti, Edoardo</creatorcontrib><creatorcontrib>Bottaccioli, Lorenzo</creatorcontrib><title>A Machine Learning Based Methodology for Load Profiles Clustering and Non-Residential Buildings Benchmarking</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Buildings benchmarking based on their electric profiles is a fundamental step to identify, evaluate and then possibly implement energy efficiency oriented actions. Indeed, benchmarking enables comparison among peer buildings or industrial sites and the identification of reference cases, either efficient and inefficient ones. In this regard, temporal data clustering is an effective and widely applicable benchmarking tool. In this work, we propose a novel Machine Learning based methodology, taking advantage of two fundamental tools, namely a decomposition algorithm and a clustering one. Several clustering algorithms have been tested to identify k-Means as the most suitable one. The proposed methodology includes the evaluation of energy Key Performance Indicators for effective analysis and comparison of buildings. The proposed framework has been tested on a real-world case study including around 2000 non-residential buildings. The classification of buildings based on K-Means achieved an accuracy of 99.7% with respect to their usage category. Furthermore, reference Key Performance Indicator values for each cluster are obtained and discussed to understand buildings' energy behaviour and possible reasons for inefficiencies.</description><subject>Algorithms</subject><subject>Benchmark testing</subject><subject>benchmarking</subject><subject>Benchmarks</subject><subject>Buildings</subject><subject>Business metrics</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Energy efficiency</subject><subject>Energy measurement</subject><subject>Key performance indicator</subject><subject>Machine learning</subject><subject>Methodology</subject><subject>non-residential buildings</subject><subject>Nonresidential buildings</subject><subject>Task analysis</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNUD1PwzAQtRBIlMLOwGCJOcWOnTge24ovKQWEymydkkubEuxiJ0P_PY7agel0uvfufRByy9mMc6Yf1q_zWcpSMROpZHmuz8iEa6ETLXJ1TiaMaZForeUluQphxxiXGZcT0s3pCqpta5GWCN62dkMXELCmK-y3rnad2xxo4zwtHdT0w7um7TDQZTeEHv0IB1vTN2eTTwxtjbZvoaOLoe3qeAx0gbba_oD_jts1uWigC3hzmlPy9fS4Xr4k5fvz63JeJpUQsk941kgV_SpeVWMWlBUAYA6ialIExQByQK1qBVoDYpbKjLFMoVKFjLnElNwf_-69-x0w9GbnBm-jpEkLnuWFTAsdUeyIqrwLwWNj9r6NTg-GMzN2amKnZuzUnDqNlLsjpUXEf3Am0qgt_gBdwXLv</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Eiraudo, Simone</creator><creator>Barbierato, Luca</creator><creator>Giannantonio, Roberta</creator><creator>Porta, Alessandro</creator><creator>Lanzini, Andrea</creator><creator>Borchiellini, Romano</creator><creator>Macii, Enrico</creator><creator>Patti, Edoardo</creator><creator>Bottaccioli, Lorenzo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4688-8212</orcidid><orcidid>https://orcid.org/0000-0002-6043-6477</orcidid><orcidid>https://orcid.org/0000-0001-6470-3299</orcidid><orcidid>https://orcid.org/0000-0001-9046-5618</orcidid><orcidid>https://orcid.org/0000-0001-6011-3929</orcidid><orcidid>https://orcid.org/0000-0001-9831-2317</orcidid><orcidid>https://orcid.org/0000-0001-7445-3975</orcidid></search><sort><creationdate>202305</creationdate><title>A Machine Learning Based Methodology for Load Profiles Clustering and Non-Residential Buildings Benchmarking</title><author>Eiraudo, Simone ; Barbierato, Luca ; Giannantonio, Roberta ; Porta, Alessandro ; Lanzini, Andrea ; Borchiellini, Romano ; Macii, Enrico ; Patti, Edoardo ; Bottaccioli, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-15f4709371cc4066e4caaae6a3cf2ea70aa6ae97d7a99aee52450057e77841453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Benchmark testing</topic><topic>benchmarking</topic><topic>Benchmarks</topic><topic>Buildings</topic><topic>Business metrics</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Energy efficiency</topic><topic>Energy measurement</topic><topic>Key performance indicator</topic><topic>Machine learning</topic><topic>Methodology</topic><topic>non-residential buildings</topic><topic>Nonresidential buildings</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eiraudo, Simone</creatorcontrib><creatorcontrib>Barbierato, Luca</creatorcontrib><creatorcontrib>Giannantonio, Roberta</creatorcontrib><creatorcontrib>Porta, Alessandro</creatorcontrib><creatorcontrib>Lanzini, Andrea</creatorcontrib><creatorcontrib>Borchiellini, Romano</creatorcontrib><creatorcontrib>Macii, Enrico</creatorcontrib><creatorcontrib>Patti, Edoardo</creatorcontrib><creatorcontrib>Bottaccioli, Lorenzo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eiraudo, Simone</au><au>Barbierato, Luca</au><au>Giannantonio, Roberta</au><au>Porta, Alessandro</au><au>Lanzini, Andrea</au><au>Borchiellini, Romano</au><au>Macii, Enrico</au><au>Patti, Edoardo</au><au>Bottaccioli, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Machine Learning Based Methodology for Load Profiles Clustering and Non-Residential Buildings Benchmarking</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2023-05</date><risdate>2023</risdate><volume>59</volume><issue>3</issue><spage>2963</spage><epage>2973</epage><pages>2963-2973</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Buildings benchmarking based on their electric profiles is a fundamental step to identify, evaluate and then possibly implement energy efficiency oriented actions. Indeed, benchmarking enables comparison among peer buildings or industrial sites and the identification of reference cases, either efficient and inefficient ones. In this regard, temporal data clustering is an effective and widely applicable benchmarking tool. In this work, we propose a novel Machine Learning based methodology, taking advantage of two fundamental tools, namely a decomposition algorithm and a clustering one. Several clustering algorithms have been tested to identify k-Means as the most suitable one. The proposed methodology includes the evaluation of energy Key Performance Indicators for effective analysis and comparison of buildings. The proposed framework has been tested on a real-world case study including around 2000 non-residential buildings. The classification of buildings based on K-Means achieved an accuracy of 99.7% with respect to their usage category. Furthermore, reference Key Performance Indicator values for each cluster are obtained and discussed to understand buildings' energy behaviour and possible reasons for inefficiencies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2023.3240669</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4688-8212</orcidid><orcidid>https://orcid.org/0000-0002-6043-6477</orcidid><orcidid>https://orcid.org/0000-0001-6470-3299</orcidid><orcidid>https://orcid.org/0000-0001-9046-5618</orcidid><orcidid>https://orcid.org/0000-0001-6011-3929</orcidid><orcidid>https://orcid.org/0000-0001-9831-2317</orcidid><orcidid>https://orcid.org/0000-0001-7445-3975</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2023-05, Vol.59 (3), p.2963-2973
issn 0093-9994
1939-9367
language eng
recordid cdi_crossref_primary_10_1109_TIA_2023_3240669
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Benchmark testing
benchmarking
Benchmarks
Buildings
Business metrics
Clustering
Clustering algorithms
Energy efficiency
Energy measurement
Key performance indicator
Machine learning
Methodology
non-residential buildings
Nonresidential buildings
Task analysis
title A Machine Learning Based Methodology for Load Profiles Clustering and Non-Residential Buildings Benchmarking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-06T03%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Machine%20Learning%20Based%20Methodology%20for%20Load%20Profiles%20Clustering%20and%20Non-Residential%20Buildings%20Benchmarking&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Eiraudo,%20Simone&rft.date=2023-05&rft.volume=59&rft.issue=3&rft.spage=2963&rft.epage=2973&rft.pages=2963-2973&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2023.3240669&rft_dat=%3Cproquest_cross%3E2815684289%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-15f4709371cc4066e4caaae6a3cf2ea70aa6ae97d7a99aee52450057e77841453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2815684289&rft_id=info:pmid/&rft_ieee_id=10032778&rfr_iscdi=true