Loading…
A Machine Learning Based Methodology for Load Profiles Clustering and Non-Residential Buildings Benchmarking
Buildings benchmarking based on their electric profiles is a fundamental step to identify, evaluate and then possibly implement energy efficiency oriented actions. Indeed, benchmarking enables comparison among peer buildings or industrial sites and the identification of reference cases, either effic...
Saved in:
Published in: | IEEE transactions on industry applications 2023-05, Vol.59 (3), p.2963-2973 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-15f4709371cc4066e4caaae6a3cf2ea70aa6ae97d7a99aee52450057e77841453 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-15f4709371cc4066e4caaae6a3cf2ea70aa6ae97d7a99aee52450057e77841453 |
container_end_page | 2973 |
container_issue | 3 |
container_start_page | 2963 |
container_title | IEEE transactions on industry applications |
container_volume | 59 |
creator | Eiraudo, Simone Barbierato, Luca Giannantonio, Roberta Porta, Alessandro Lanzini, Andrea Borchiellini, Romano Macii, Enrico Patti, Edoardo Bottaccioli, Lorenzo |
description | Buildings benchmarking based on their electric profiles is a fundamental step to identify, evaluate and then possibly implement energy efficiency oriented actions. Indeed, benchmarking enables comparison among peer buildings or industrial sites and the identification of reference cases, either efficient and inefficient ones. In this regard, temporal data clustering is an effective and widely applicable benchmarking tool. In this work, we propose a novel Machine Learning based methodology, taking advantage of two fundamental tools, namely a decomposition algorithm and a clustering one. Several clustering algorithms have been tested to identify k-Means as the most suitable one. The proposed methodology includes the evaluation of energy Key Performance Indicators for effective analysis and comparison of buildings. The proposed framework has been tested on a real-world case study including around 2000 non-residential buildings. The classification of buildings based on K-Means achieved an accuracy of 99.7% with respect to their usage category. Furthermore, reference Key Performance Indicator values for each cluster are obtained and discussed to understand buildings' energy behaviour and possible reasons for inefficiencies. |
doi_str_mv | 10.1109/TIA.2023.3240669 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2023_3240669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10032778</ieee_id><sourcerecordid>2815684289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-15f4709371cc4066e4caaae6a3cf2ea70aa6ae97d7a99aee52450057e77841453</originalsourceid><addsrcrecordid>eNpNUD1PwzAQtRBIlMLOwGCJOcWOnTge24ovKQWEymydkkubEuxiJ0P_PY7agel0uvfufRByy9mMc6Yf1q_zWcpSMROpZHmuz8iEa6ETLXJ1TiaMaZForeUluQphxxiXGZcT0s3pCqpta5GWCN62dkMXELCmK-y3rnad2xxo4zwtHdT0w7um7TDQZTeEHv0IB1vTN2eTTwxtjbZvoaOLoe3qeAx0gbba_oD_jts1uWigC3hzmlPy9fS4Xr4k5fvz63JeJpUQsk941kgV_SpeVWMWlBUAYA6ialIExQByQK1qBVoDYpbKjLFMoVKFjLnElNwf_-69-x0w9GbnBm-jpEkLnuWFTAsdUeyIqrwLwWNj9r6NTg-GMzN2amKnZuzUnDqNlLsjpUXEf3Am0qgt_gBdwXLv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815684289</pqid></control><display><type>article</type><title>A Machine Learning Based Methodology for Load Profiles Clustering and Non-Residential Buildings Benchmarking</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Eiraudo, Simone ; Barbierato, Luca ; Giannantonio, Roberta ; Porta, Alessandro ; Lanzini, Andrea ; Borchiellini, Romano ; Macii, Enrico ; Patti, Edoardo ; Bottaccioli, Lorenzo</creator><creatorcontrib>Eiraudo, Simone ; Barbierato, Luca ; Giannantonio, Roberta ; Porta, Alessandro ; Lanzini, Andrea ; Borchiellini, Romano ; Macii, Enrico ; Patti, Edoardo ; Bottaccioli, Lorenzo</creatorcontrib><description>Buildings benchmarking based on their electric profiles is a fundamental step to identify, evaluate and then possibly implement energy efficiency oriented actions. Indeed, benchmarking enables comparison among peer buildings or industrial sites and the identification of reference cases, either efficient and inefficient ones. In this regard, temporal data clustering is an effective and widely applicable benchmarking tool. In this work, we propose a novel Machine Learning based methodology, taking advantage of two fundamental tools, namely a decomposition algorithm and a clustering one. Several clustering algorithms have been tested to identify k-Means as the most suitable one. The proposed methodology includes the evaluation of energy Key Performance Indicators for effective analysis and comparison of buildings. The proposed framework has been tested on a real-world case study including around 2000 non-residential buildings. The classification of buildings based on K-Means achieved an accuracy of 99.7% with respect to their usage category. Furthermore, reference Key Performance Indicator values for each cluster are obtained and discussed to understand buildings' energy behaviour and possible reasons for inefficiencies.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2023.3240669</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Benchmark testing ; benchmarking ; Benchmarks ; Buildings ; Business metrics ; Clustering ; Clustering algorithms ; Energy efficiency ; Energy measurement ; Key performance indicator ; Machine learning ; Methodology ; non-residential buildings ; Nonresidential buildings ; Task analysis</subject><ispartof>IEEE transactions on industry applications, 2023-05, Vol.59 (3), p.2963-2973</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-15f4709371cc4066e4caaae6a3cf2ea70aa6ae97d7a99aee52450057e77841453</citedby><cites>FETCH-LOGICAL-c334t-15f4709371cc4066e4caaae6a3cf2ea70aa6ae97d7a99aee52450057e77841453</cites><orcidid>0000-0003-4688-8212 ; 0000-0002-6043-6477 ; 0000-0001-6470-3299 ; 0000-0001-9046-5618 ; 0000-0001-6011-3929 ; 0000-0001-9831-2317 ; 0000-0001-7445-3975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10032778$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml></links><search><creatorcontrib>Eiraudo, Simone</creatorcontrib><creatorcontrib>Barbierato, Luca</creatorcontrib><creatorcontrib>Giannantonio, Roberta</creatorcontrib><creatorcontrib>Porta, Alessandro</creatorcontrib><creatorcontrib>Lanzini, Andrea</creatorcontrib><creatorcontrib>Borchiellini, Romano</creatorcontrib><creatorcontrib>Macii, Enrico</creatorcontrib><creatorcontrib>Patti, Edoardo</creatorcontrib><creatorcontrib>Bottaccioli, Lorenzo</creatorcontrib><title>A Machine Learning Based Methodology for Load Profiles Clustering and Non-Residential Buildings Benchmarking</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Buildings benchmarking based on their electric profiles is a fundamental step to identify, evaluate and then possibly implement energy efficiency oriented actions. Indeed, benchmarking enables comparison among peer buildings or industrial sites and the identification of reference cases, either efficient and inefficient ones. In this regard, temporal data clustering is an effective and widely applicable benchmarking tool. In this work, we propose a novel Machine Learning based methodology, taking advantage of two fundamental tools, namely a decomposition algorithm and a clustering one. Several clustering algorithms have been tested to identify k-Means as the most suitable one. The proposed methodology includes the evaluation of energy Key Performance Indicators for effective analysis and comparison of buildings. The proposed framework has been tested on a real-world case study including around 2000 non-residential buildings. The classification of buildings based on K-Means achieved an accuracy of 99.7% with respect to their usage category. Furthermore, reference Key Performance Indicator values for each cluster are obtained and discussed to understand buildings' energy behaviour and possible reasons for inefficiencies.</description><subject>Algorithms</subject><subject>Benchmark testing</subject><subject>benchmarking</subject><subject>Benchmarks</subject><subject>Buildings</subject><subject>Business metrics</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Energy efficiency</subject><subject>Energy measurement</subject><subject>Key performance indicator</subject><subject>Machine learning</subject><subject>Methodology</subject><subject>non-residential buildings</subject><subject>Nonresidential buildings</subject><subject>Task analysis</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNUD1PwzAQtRBIlMLOwGCJOcWOnTge24ovKQWEymydkkubEuxiJ0P_PY7agel0uvfufRByy9mMc6Yf1q_zWcpSMROpZHmuz8iEa6ETLXJ1TiaMaZForeUluQphxxiXGZcT0s3pCqpta5GWCN62dkMXELCmK-y3rnad2xxo4zwtHdT0w7um7TDQZTeEHv0IB1vTN2eTTwxtjbZvoaOLoe3qeAx0gbba_oD_jts1uWigC3hzmlPy9fS4Xr4k5fvz63JeJpUQsk941kgV_SpeVWMWlBUAYA6ialIExQByQK1qBVoDYpbKjLFMoVKFjLnElNwf_-69-x0w9GbnBm-jpEkLnuWFTAsdUeyIqrwLwWNj9r6NTg-GMzN2amKnZuzUnDqNlLsjpUXEf3Am0qgt_gBdwXLv</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Eiraudo, Simone</creator><creator>Barbierato, Luca</creator><creator>Giannantonio, Roberta</creator><creator>Porta, Alessandro</creator><creator>Lanzini, Andrea</creator><creator>Borchiellini, Romano</creator><creator>Macii, Enrico</creator><creator>Patti, Edoardo</creator><creator>Bottaccioli, Lorenzo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4688-8212</orcidid><orcidid>https://orcid.org/0000-0002-6043-6477</orcidid><orcidid>https://orcid.org/0000-0001-6470-3299</orcidid><orcidid>https://orcid.org/0000-0001-9046-5618</orcidid><orcidid>https://orcid.org/0000-0001-6011-3929</orcidid><orcidid>https://orcid.org/0000-0001-9831-2317</orcidid><orcidid>https://orcid.org/0000-0001-7445-3975</orcidid></search><sort><creationdate>202305</creationdate><title>A Machine Learning Based Methodology for Load Profiles Clustering and Non-Residential Buildings Benchmarking</title><author>Eiraudo, Simone ; Barbierato, Luca ; Giannantonio, Roberta ; Porta, Alessandro ; Lanzini, Andrea ; Borchiellini, Romano ; Macii, Enrico ; Patti, Edoardo ; Bottaccioli, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-15f4709371cc4066e4caaae6a3cf2ea70aa6ae97d7a99aee52450057e77841453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Benchmark testing</topic><topic>benchmarking</topic><topic>Benchmarks</topic><topic>Buildings</topic><topic>Business metrics</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Energy efficiency</topic><topic>Energy measurement</topic><topic>Key performance indicator</topic><topic>Machine learning</topic><topic>Methodology</topic><topic>non-residential buildings</topic><topic>Nonresidential buildings</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eiraudo, Simone</creatorcontrib><creatorcontrib>Barbierato, Luca</creatorcontrib><creatorcontrib>Giannantonio, Roberta</creatorcontrib><creatorcontrib>Porta, Alessandro</creatorcontrib><creatorcontrib>Lanzini, Andrea</creatorcontrib><creatorcontrib>Borchiellini, Romano</creatorcontrib><creatorcontrib>Macii, Enrico</creatorcontrib><creatorcontrib>Patti, Edoardo</creatorcontrib><creatorcontrib>Bottaccioli, Lorenzo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eiraudo, Simone</au><au>Barbierato, Luca</au><au>Giannantonio, Roberta</au><au>Porta, Alessandro</au><au>Lanzini, Andrea</au><au>Borchiellini, Romano</au><au>Macii, Enrico</au><au>Patti, Edoardo</au><au>Bottaccioli, Lorenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Machine Learning Based Methodology for Load Profiles Clustering and Non-Residential Buildings Benchmarking</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2023-05</date><risdate>2023</risdate><volume>59</volume><issue>3</issue><spage>2963</spage><epage>2973</epage><pages>2963-2973</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Buildings benchmarking based on their electric profiles is a fundamental step to identify, evaluate and then possibly implement energy efficiency oriented actions. Indeed, benchmarking enables comparison among peer buildings or industrial sites and the identification of reference cases, either efficient and inefficient ones. In this regard, temporal data clustering is an effective and widely applicable benchmarking tool. In this work, we propose a novel Machine Learning based methodology, taking advantage of two fundamental tools, namely a decomposition algorithm and a clustering one. Several clustering algorithms have been tested to identify k-Means as the most suitable one. The proposed methodology includes the evaluation of energy Key Performance Indicators for effective analysis and comparison of buildings. The proposed framework has been tested on a real-world case study including around 2000 non-residential buildings. The classification of buildings based on K-Means achieved an accuracy of 99.7% with respect to their usage category. Furthermore, reference Key Performance Indicator values for each cluster are obtained and discussed to understand buildings' energy behaviour and possible reasons for inefficiencies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2023.3240669</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4688-8212</orcidid><orcidid>https://orcid.org/0000-0002-6043-6477</orcidid><orcidid>https://orcid.org/0000-0001-6470-3299</orcidid><orcidid>https://orcid.org/0000-0001-9046-5618</orcidid><orcidid>https://orcid.org/0000-0001-6011-3929</orcidid><orcidid>https://orcid.org/0000-0001-9831-2317</orcidid><orcidid>https://orcid.org/0000-0001-7445-3975</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2023-05, Vol.59 (3), p.2963-2973 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIA_2023_3240669 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Benchmark testing benchmarking Benchmarks Buildings Business metrics Clustering Clustering algorithms Energy efficiency Energy measurement Key performance indicator Machine learning Methodology non-residential buildings Nonresidential buildings Task analysis |
title | A Machine Learning Based Methodology for Load Profiles Clustering and Non-Residential Buildings Benchmarking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-06T03%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Machine%20Learning%20Based%20Methodology%20for%20Load%20Profiles%20Clustering%20and%20Non-Residential%20Buildings%20Benchmarking&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Eiraudo,%20Simone&rft.date=2023-05&rft.volume=59&rft.issue=3&rft.spage=2963&rft.epage=2973&rft.pages=2963-2973&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2023.3240669&rft_dat=%3Cproquest_cross%3E2815684289%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-15f4709371cc4066e4caaae6a3cf2ea70aa6ae97d7a99aee52450057e77841453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2815684289&rft_id=info:pmid/&rft_ieee_id=10032778&rfr_iscdi=true |