Loading…
Multiharmonic Force Vector Model for Bearingless Electric Motors
This paper proposes and develops a new analytic bearingless machine model that incorporates multiple airgap harmonic field interactions and has several advantages. The model can be used to address levitation performance requirements by developing force/torque regulation methods to precisely calculat...
Saved in:
Published in: | IEEE transactions on industry applications 2024-10, p.1-11 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes and develops a new analytic bearingless machine model that incorporates multiple airgap harmonic field interactions and has several advantages. The model can be used to address levitation performance requirements by developing force/torque regulation methods to precisely calculate commands to current regulators. This allows relaxing constraints during the design stage and has the potential to enable consideration of higher performance bearingless machines. Furthermore, analogous to torque enhancement in conventional electric machines, the proposed model can be used to identify options for suspension force enhancement in bearingless motors by controlling multiple magnetic field harmonics. This paper provides a detailed derivation of the model and shows how it can be used to improve force regulation accuracy and enhance force capacity. The paper finds that by controlling four airgap harmonic fields, instead of the typical two harmonics, force capacity can be increased by approximately 40%. Hardware measurements using a 10-phase bearingless induction machine validate the proposed model and force capacity increase. |
---|---|
ISSN: | 0093-9994 1939-9367 |
DOI: | 10.1109/TIA.2024.3481210 |