Loading…

Filter Design of Direct Matrix Converter for Synchronous Applications

Filters for switching ripple attenuation are essential at the input, and sometimes at the output for certain applications, for the deployment of matrix converters (MCs). Due to the absence of inertial elements in the MC structure and the consequent tight input-output coupling, the filter parameters...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2014-12, Vol.61 (12), p.6483-6493
Main Authors: Dasgupta, Anindya, Sensarma, Parthasarathi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Filters for switching ripple attenuation are essential at the input, and sometimes at the output for certain applications, for the deployment of matrix converters (MCs). Due to the absence of inertial elements in the MC structure and the consequent tight input-output coupling, the filter parameters significantly affect its dynamic behavior. This paper presents an exhaustive filter design method for synchronous applications of the MC in power systems. Apart from the usual considerations of ripple attenuation, voltage regulation, reactive current loading, and internal losses, this paper also addresses additional constraints which may be imposed by requirements of dynamic performance and reliable commutation. Rigorous analytical justification of each design step is provided and the sequential design process is summarized. Relevant experimental results are presented to validate the proposed design tool.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2014.2317134