Loading…

A Novel 4-DOF Hybrid Magnetic Bearing for DGMSCMG

In this paper, a novel structure of four degrees of freedom (4-DOF) hybrid magnetic bearing is proposed for double gimbal magnetically suspended control momentum gyro (DGMSCMG). It includes two active parts and one passive part, and every active part has eight stator magnetic poles around the circum...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2017-03, Vol.64 (3), p.2196-2204
Main Authors: Sun, Jinji, Ju, Ziyan, Peng, Cong, Le, Yun, Ren, Hongliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-a204d2abf16240211f377240eb586311094a8c5b6631e37197a387683f2ae02d3
cites cdi_FETCH-LOGICAL-c338t-a204d2abf16240211f377240eb586311094a8c5b6631e37197a387683f2ae02d3
container_end_page 2204
container_issue 3
container_start_page 2196
container_title IEEE transactions on industrial electronics (1982)
container_volume 64
creator Sun, Jinji
Ju, Ziyan
Peng, Cong
Le, Yun
Ren, Hongliang
description In this paper, a novel structure of four degrees of freedom (4-DOF) hybrid magnetic bearing is proposed for double gimbal magnetically suspended control momentum gyro (DGMSCMG). It includes two active parts and one passive part, and every active part has eight stator magnetic poles around the circumference in X and Y directions, which are divided into upper and lower layers. The passive part has two whole magnetic rings, which is located in the middle of this 4-DOF hybrid magnetic bearing. The radial active force is analyzed by equivalent magnetic circuit method (EMCM) and the axial resilience force is analyzed by the infinitesimal method based on the end magnetic flux. Meanwhile, three-dimensional finite-element model of the 4-DOF hybrid magnetic bearing is established with ANSYS software, and the radial displacement versus radial force, the current versus radial force, and the axial displacement versus axial resilience force characteristics are analyzed compared with the EMCM. Furthermore, the 10 Nms DGMSCMG prototype with the proposed 4-DOF hybrid magnetic bearing is manufactured, and the experiments of the radial active force test and the axial resilience force test are carried out. Experimental results show that the presented 4-DOF hybrid magnetic bearing has good force performance and verify the correctness of the theoretical analysis.
doi_str_mv 10.1109/TIE.2016.2626238
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2016_2626238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7738426</ieee_id><sourcerecordid>1868427519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-a204d2abf16240211f377240eb586311094a8c5b6631e37197a387683f2ae02d3</originalsourceid><addsrcrecordid>eNo9UEtrwkAQXkoLtbb3Qi8LPcfO7DtH6yMKWg-152UTNxKxxm5iwX_fDUqZw8zA9-Ij5BlhgAjp23o-GTBANWAqDjc3pIdS6iRNhbklPWDaJABC3ZOHptkBoJAoewSH9KP-9XsqkvFqSmfnPFQbunTbg2-rgr57F6rDlpZ1oONs-TlaZo_krnT7xj9dd598TSfr0SxZrLL5aLhICs5NmzgGYsNcXqJiAhhiybWOl8-lUbyLLJwpZK7i47nGVDtutDK8ZM4D2_A-eb3oHkP9c_JNa3f1KRyipUWjjGBaYhpRcEEVoW6a4Et7DNW3C2eLYDsXG4uxXTH2WkykvFwolff-H641j5qK_wGRGVlo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1868427519</pqid></control><display><type>article</type><title>A Novel 4-DOF Hybrid Magnetic Bearing for DGMSCMG</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Sun, Jinji ; Ju, Ziyan ; Peng, Cong ; Le, Yun ; Ren, Hongliang</creator><creatorcontrib>Sun, Jinji ; Ju, Ziyan ; Peng, Cong ; Le, Yun ; Ren, Hongliang</creatorcontrib><description>In this paper, a novel structure of four degrees of freedom (4-DOF) hybrid magnetic bearing is proposed for double gimbal magnetically suspended control momentum gyro (DGMSCMG). It includes two active parts and one passive part, and every active part has eight stator magnetic poles around the circumference in X and Y directions, which are divided into upper and lower layers. The passive part has two whole magnetic rings, which is located in the middle of this 4-DOF hybrid magnetic bearing. The radial active force is analyzed by equivalent magnetic circuit method (EMCM) and the axial resilience force is analyzed by the infinitesimal method based on the end magnetic flux. Meanwhile, three-dimensional finite-element model of the 4-DOF hybrid magnetic bearing is established with ANSYS software, and the radial displacement versus radial force, the current versus radial force, and the axial displacement versus axial resilience force characteristics are analyzed compared with the EMCM. Furthermore, the 10 Nms DGMSCMG prototype with the proposed 4-DOF hybrid magnetic bearing is manufactured, and the experiments of the radial active force test and the axial resilience force test are carried out. Experimental results show that the presented 4-DOF hybrid magnetic bearing has good force performance and verify the correctness of the theoretical analysis.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2016.2626238</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Air gaps ; Degrees of freedom ; Double gimbal magnetically suspended control momentum gyro (DGMSCMG) ; equivalent magnetic circuit ; Finite element method ; finite-element method (FEM) analysis ; Force ; four degrees of freedom (4-DOF) hybrid magnetic bearing (HMB) ; Magnetic bearings ; Magnetic circuits ; Magnetic flux ; Magnetic levitation ; Magnetic poles ; Permanent magnets ; Ponds ; Resilience ; Rotors ; Three dimensional models ; Wilderness areas</subject><ispartof>IEEE transactions on industrial electronics (1982), 2017-03, Vol.64 (3), p.2196-2204</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-a204d2abf16240211f377240eb586311094a8c5b6631e37197a387683f2ae02d3</citedby><cites>FETCH-LOGICAL-c338t-a204d2abf16240211f377240eb586311094a8c5b6631e37197a387683f2ae02d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7738426$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sun, Jinji</creatorcontrib><creatorcontrib>Ju, Ziyan</creatorcontrib><creatorcontrib>Peng, Cong</creatorcontrib><creatorcontrib>Le, Yun</creatorcontrib><creatorcontrib>Ren, Hongliang</creatorcontrib><title>A Novel 4-DOF Hybrid Magnetic Bearing for DGMSCMG</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>In this paper, a novel structure of four degrees of freedom (4-DOF) hybrid magnetic bearing is proposed for double gimbal magnetically suspended control momentum gyro (DGMSCMG). It includes two active parts and one passive part, and every active part has eight stator magnetic poles around the circumference in X and Y directions, which are divided into upper and lower layers. The passive part has two whole magnetic rings, which is located in the middle of this 4-DOF hybrid magnetic bearing. The radial active force is analyzed by equivalent magnetic circuit method (EMCM) and the axial resilience force is analyzed by the infinitesimal method based on the end magnetic flux. Meanwhile, three-dimensional finite-element model of the 4-DOF hybrid magnetic bearing is established with ANSYS software, and the radial displacement versus radial force, the current versus radial force, and the axial displacement versus axial resilience force characteristics are analyzed compared with the EMCM. Furthermore, the 10 Nms DGMSCMG prototype with the proposed 4-DOF hybrid magnetic bearing is manufactured, and the experiments of the radial active force test and the axial resilience force test are carried out. Experimental results show that the presented 4-DOF hybrid magnetic bearing has good force performance and verify the correctness of the theoretical analysis.</description><subject>Air gaps</subject><subject>Degrees of freedom</subject><subject>Double gimbal magnetically suspended control momentum gyro (DGMSCMG)</subject><subject>equivalent magnetic circuit</subject><subject>Finite element method</subject><subject>finite-element method (FEM) analysis</subject><subject>Force</subject><subject>four degrees of freedom (4-DOF) hybrid magnetic bearing (HMB)</subject><subject>Magnetic bearings</subject><subject>Magnetic circuits</subject><subject>Magnetic flux</subject><subject>Magnetic levitation</subject><subject>Magnetic poles</subject><subject>Permanent magnets</subject><subject>Ponds</subject><subject>Resilience</subject><subject>Rotors</subject><subject>Three dimensional models</subject><subject>Wilderness areas</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9UEtrwkAQXkoLtbb3Qi8LPcfO7DtH6yMKWg-152UTNxKxxm5iwX_fDUqZw8zA9-Ij5BlhgAjp23o-GTBANWAqDjc3pIdS6iRNhbklPWDaJABC3ZOHptkBoJAoewSH9KP-9XsqkvFqSmfnPFQbunTbg2-rgr57F6rDlpZ1oONs-TlaZo_krnT7xj9dd598TSfr0SxZrLL5aLhICs5NmzgGYsNcXqJiAhhiybWOl8-lUbyLLJwpZK7i47nGVDtutDK8ZM4D2_A-eb3oHkP9c_JNa3f1KRyipUWjjGBaYhpRcEEVoW6a4Et7DNW3C2eLYDsXG4uxXTH2WkykvFwolff-H641j5qK_wGRGVlo</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Sun, Jinji</creator><creator>Ju, Ziyan</creator><creator>Peng, Cong</creator><creator>Le, Yun</creator><creator>Ren, Hongliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201703</creationdate><title>A Novel 4-DOF Hybrid Magnetic Bearing for DGMSCMG</title><author>Sun, Jinji ; Ju, Ziyan ; Peng, Cong ; Le, Yun ; Ren, Hongliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-a204d2abf16240211f377240eb586311094a8c5b6631e37197a387683f2ae02d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air gaps</topic><topic>Degrees of freedom</topic><topic>Double gimbal magnetically suspended control momentum gyro (DGMSCMG)</topic><topic>equivalent magnetic circuit</topic><topic>Finite element method</topic><topic>finite-element method (FEM) analysis</topic><topic>Force</topic><topic>four degrees of freedom (4-DOF) hybrid magnetic bearing (HMB)</topic><topic>Magnetic bearings</topic><topic>Magnetic circuits</topic><topic>Magnetic flux</topic><topic>Magnetic levitation</topic><topic>Magnetic poles</topic><topic>Permanent magnets</topic><topic>Ponds</topic><topic>Resilience</topic><topic>Rotors</topic><topic>Three dimensional models</topic><topic>Wilderness areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jinji</creatorcontrib><creatorcontrib>Ju, Ziyan</creatorcontrib><creatorcontrib>Peng, Cong</creatorcontrib><creatorcontrib>Le, Yun</creatorcontrib><creatorcontrib>Ren, Hongliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jinji</au><au>Ju, Ziyan</au><au>Peng, Cong</au><au>Le, Yun</au><au>Ren, Hongliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel 4-DOF Hybrid Magnetic Bearing for DGMSCMG</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2017-03</date><risdate>2017</risdate><volume>64</volume><issue>3</issue><spage>2196</spage><epage>2204</epage><pages>2196-2204</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>In this paper, a novel structure of four degrees of freedom (4-DOF) hybrid magnetic bearing is proposed for double gimbal magnetically suspended control momentum gyro (DGMSCMG). It includes two active parts and one passive part, and every active part has eight stator magnetic poles around the circumference in X and Y directions, which are divided into upper and lower layers. The passive part has two whole magnetic rings, which is located in the middle of this 4-DOF hybrid magnetic bearing. The radial active force is analyzed by equivalent magnetic circuit method (EMCM) and the axial resilience force is analyzed by the infinitesimal method based on the end magnetic flux. Meanwhile, three-dimensional finite-element model of the 4-DOF hybrid magnetic bearing is established with ANSYS software, and the radial displacement versus radial force, the current versus radial force, and the axial displacement versus axial resilience force characteristics are analyzed compared with the EMCM. Furthermore, the 10 Nms DGMSCMG prototype with the proposed 4-DOF hybrid magnetic bearing is manufactured, and the experiments of the radial active force test and the axial resilience force test are carried out. Experimental results show that the presented 4-DOF hybrid magnetic bearing has good force performance and verify the correctness of the theoretical analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2016.2626238</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2017-03, Vol.64 (3), p.2196-2204
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_TIE_2016_2626238
source IEEE Electronic Library (IEL) Journals
subjects Air gaps
Degrees of freedom
Double gimbal magnetically suspended control momentum gyro (DGMSCMG)
equivalent magnetic circuit
Finite element method
finite-element method (FEM) analysis
Force
four degrees of freedom (4-DOF) hybrid magnetic bearing (HMB)
Magnetic bearings
Magnetic circuits
Magnetic flux
Magnetic levitation
Magnetic poles
Permanent magnets
Ponds
Resilience
Rotors
Three dimensional models
Wilderness areas
title A Novel 4-DOF Hybrid Magnetic Bearing for DGMSCMG
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%204-DOF%20Hybrid%20Magnetic%20Bearing%20for%20DGMSCMG&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Sun,%20Jinji&rft.date=2017-03&rft.volume=64&rft.issue=3&rft.spage=2196&rft.epage=2204&rft.pages=2196-2204&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2016.2626238&rft_dat=%3Cproquest_cross%3E1868427519%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-a204d2abf16240211f377240eb586311094a8c5b6631e37197a387683f2ae02d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1868427519&rft_id=info:pmid/&rft_ieee_id=7738426&rfr_iscdi=true