Loading…

Sliding Mode Observer-Based Heading Control for a Gliding Robotic Dolphin

This paper proposes a sliding mode observer (SMO)-based heading control method for the gliding motion of a dolphin-like gliding robot. A pair of flippers are employed to regulate gliding direction via differential actions, rather than actuators commonly used in traditional underwater gliders. The fr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2017-08, Vol.64 (8), p.6815-6824
Main Authors: Yuan, Jun, Wu, Zhengxing, Yu, Junzhi, Tan, Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-3c28d50cb18e9d0e111e9dfa11be6e40a5e40969a6db4f786ef82f8e549bc1c83
cites cdi_FETCH-LOGICAL-c291t-3c28d50cb18e9d0e111e9dfa11be6e40a5e40969a6db4f786ef82f8e549bc1c83
container_end_page 6824
container_issue 8
container_start_page 6815
container_title IEEE transactions on industrial electronics (1982)
container_volume 64
creator Yuan, Jun
Wu, Zhengxing
Yu, Junzhi
Tan, Min
description This paper proposes a sliding mode observer (SMO)-based heading control method for the gliding motion of a dolphin-like gliding robot. A pair of flippers are employed to regulate gliding direction via differential actions, rather than actuators commonly used in traditional underwater gliders. The framework of the control algorithm is established based on a derived dynamic model, including an SMO, a backstepping controller, and a solver for action commands of the flippers. Considering gliding velocity is indispensable for heading control but difficult to measure practically, we design the SMO to estimate gliding velocity by data acquired from a depth sensor and an attitude and heading reference system. Afterward, the backstepping methodology is applied to derive the heading control law. Further, a solver is designed to convert the controller's instruction to deflection angles of the flippers, which can simultaneously eliminate coupled but undesired roll and sideslip. Simulation results obtained demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1109/TIE.2017.2674606
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2017_2674606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7864343</ieee_id><sourcerecordid>2174415861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-3c28d50cb18e9d0e111e9dfa11be6e40a5e40969a6db4f786ef82f8e549bc1c83</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhS0EEqWwI7FYYk7xJbZjj1BKG6moEpTZcpILpApxsVMk_j0urVjuDffe3dNHyDWwCQDTd-tiNkkZ5JNU5lwyeUJGIESeaM3VKRmxNFcJY1yek4sQNowBFyBGpHjt2rrt3-mzq5GuyoD-G33yYAPWdIH2bzd1_eBdRxvnqaXzY-LFlW5oK_rouu1H21-Ss8Z2Aa-OOiZvT7P1dJEsV_Nier9MqlTDkGRVqmrBqhIU6pohAERtLECJEjmzIg4ttZV1yZtcSWxU2igUXJcVVCobk9vD3a13XzsMg9m4ne_jS5NCzjkIJSG62MFVeReCx8Zsfftp_Y8BZvbATARm9sDMEViM3BwiLSL-22MDnvEs-wVU6mXr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174415861</pqid></control><display><type>article</type><title>Sliding Mode Observer-Based Heading Control for a Gliding Robotic Dolphin</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yuan, Jun ; Wu, Zhengxing ; Yu, Junzhi ; Tan, Min</creator><creatorcontrib>Yuan, Jun ; Wu, Zhengxing ; Yu, Junzhi ; Tan, Min</creatorcontrib><description>This paper proposes a sliding mode observer (SMO)-based heading control method for the gliding motion of a dolphin-like gliding robot. A pair of flippers are employed to regulate gliding direction via differential actions, rather than actuators commonly used in traditional underwater gliders. The framework of the control algorithm is established based on a derived dynamic model, including an SMO, a backstepping controller, and a solver for action commands of the flippers. Considering gliding velocity is indispensable for heading control but difficult to measure practically, we design the SMO to estimate gliding velocity by data acquired from a depth sensor and an attitude and heading reference system. Afterward, the backstepping methodology is applied to derive the heading control law. Further, a solver is designed to convert the controller's instruction to deflection angles of the flippers, which can simultaneously eliminate coupled but undesired roll and sideslip. Simulation results obtained demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2017.2674606</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Bladder ; Computer simulation ; Control algorithms ; Control theory ; Data acquisition ; Dolphins ; Dynamic models ; Gliders ; Gliding ; Gliding robotic dolphin ; heading control ; Hydrodynamics ; Oils ; Reference systems ; Robot dynamics ; Robot kinematics ; Service robots ; Sideslip ; Sliding mode control ; sliding mode observer (SMO) ; underwater robotics</subject><ispartof>IEEE transactions on industrial electronics (1982), 2017-08, Vol.64 (8), p.6815-6824</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-3c28d50cb18e9d0e111e9dfa11be6e40a5e40969a6db4f786ef82f8e549bc1c83</citedby><cites>FETCH-LOGICAL-c291t-3c28d50cb18e9d0e111e9dfa11be6e40a5e40969a6db4f786ef82f8e549bc1c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7864343$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yuan, Jun</creatorcontrib><creatorcontrib>Wu, Zhengxing</creatorcontrib><creatorcontrib>Yu, Junzhi</creatorcontrib><creatorcontrib>Tan, Min</creatorcontrib><title>Sliding Mode Observer-Based Heading Control for a Gliding Robotic Dolphin</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper proposes a sliding mode observer (SMO)-based heading control method for the gliding motion of a dolphin-like gliding robot. A pair of flippers are employed to regulate gliding direction via differential actions, rather than actuators commonly used in traditional underwater gliders. The framework of the control algorithm is established based on a derived dynamic model, including an SMO, a backstepping controller, and a solver for action commands of the flippers. Considering gliding velocity is indispensable for heading control but difficult to measure practically, we design the SMO to estimate gliding velocity by data acquired from a depth sensor and an attitude and heading reference system. Afterward, the backstepping methodology is applied to derive the heading control law. Further, a solver is designed to convert the controller's instruction to deflection angles of the flippers, which can simultaneously eliminate coupled but undesired roll and sideslip. Simulation results obtained demonstrate the effectiveness of the proposed method.</description><subject>Actuators</subject><subject>Bladder</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Data acquisition</subject><subject>Dolphins</subject><subject>Dynamic models</subject><subject>Gliders</subject><subject>Gliding</subject><subject>Gliding robotic dolphin</subject><subject>heading control</subject><subject>Hydrodynamics</subject><subject>Oils</subject><subject>Reference systems</subject><subject>Robot dynamics</subject><subject>Robot kinematics</subject><subject>Service robots</subject><subject>Sideslip</subject><subject>Sliding mode control</subject><subject>sliding mode observer (SMO)</subject><subject>underwater robotics</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQhS0EEqWwI7FYYk7xJbZjj1BKG6moEpTZcpILpApxsVMk_j0urVjuDffe3dNHyDWwCQDTd-tiNkkZ5JNU5lwyeUJGIESeaM3VKRmxNFcJY1yek4sQNowBFyBGpHjt2rrt3-mzq5GuyoD-G33yYAPWdIH2bzd1_eBdRxvnqaXzY-LFlW5oK_rouu1H21-Ss8Z2Aa-OOiZvT7P1dJEsV_Nier9MqlTDkGRVqmrBqhIU6pohAERtLECJEjmzIg4ttZV1yZtcSWxU2igUXJcVVCobk9vD3a13XzsMg9m4ne_jS5NCzjkIJSG62MFVeReCx8Zsfftp_Y8BZvbATARm9sDMEViM3BwiLSL-22MDnvEs-wVU6mXr</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Yuan, Jun</creator><creator>Wu, Zhengxing</creator><creator>Yu, Junzhi</creator><creator>Tan, Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201708</creationdate><title>Sliding Mode Observer-Based Heading Control for a Gliding Robotic Dolphin</title><author>Yuan, Jun ; Wu, Zhengxing ; Yu, Junzhi ; Tan, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-3c28d50cb18e9d0e111e9dfa11be6e40a5e40969a6db4f786ef82f8e549bc1c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actuators</topic><topic>Bladder</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Data acquisition</topic><topic>Dolphins</topic><topic>Dynamic models</topic><topic>Gliders</topic><topic>Gliding</topic><topic>Gliding robotic dolphin</topic><topic>heading control</topic><topic>Hydrodynamics</topic><topic>Oils</topic><topic>Reference systems</topic><topic>Robot dynamics</topic><topic>Robot kinematics</topic><topic>Service robots</topic><topic>Sideslip</topic><topic>Sliding mode control</topic><topic>sliding mode observer (SMO)</topic><topic>underwater robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Jun</creatorcontrib><creatorcontrib>Wu, Zhengxing</creatorcontrib><creatorcontrib>Yu, Junzhi</creatorcontrib><creatorcontrib>Tan, Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Jun</au><au>Wu, Zhengxing</au><au>Yu, Junzhi</au><au>Tan, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliding Mode Observer-Based Heading Control for a Gliding Robotic Dolphin</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2017-08</date><risdate>2017</risdate><volume>64</volume><issue>8</issue><spage>6815</spage><epage>6824</epage><pages>6815-6824</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper proposes a sliding mode observer (SMO)-based heading control method for the gliding motion of a dolphin-like gliding robot. A pair of flippers are employed to regulate gliding direction via differential actions, rather than actuators commonly used in traditional underwater gliders. The framework of the control algorithm is established based on a derived dynamic model, including an SMO, a backstepping controller, and a solver for action commands of the flippers. Considering gliding velocity is indispensable for heading control but difficult to measure practically, we design the SMO to estimate gliding velocity by data acquired from a depth sensor and an attitude and heading reference system. Afterward, the backstepping methodology is applied to derive the heading control law. Further, a solver is designed to convert the controller's instruction to deflection angles of the flippers, which can simultaneously eliminate coupled but undesired roll and sideslip. Simulation results obtained demonstrate the effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2017.2674606</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2017-08, Vol.64 (8), p.6815-6824
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_TIE_2017_2674606
source IEEE Electronic Library (IEL) Journals
subjects Actuators
Bladder
Computer simulation
Control algorithms
Control theory
Data acquisition
Dolphins
Dynamic models
Gliders
Gliding
Gliding robotic dolphin
heading control
Hydrodynamics
Oils
Reference systems
Robot dynamics
Robot kinematics
Service robots
Sideslip
Sliding mode control
sliding mode observer (SMO)
underwater robotics
title Sliding Mode Observer-Based Heading Control for a Gliding Robotic Dolphin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliding%20Mode%20Observer-Based%20Heading%20Control%20for%20a%20Gliding%20Robotic%20Dolphin&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Yuan,%20Jun&rft.date=2017-08&rft.volume=64&rft.issue=8&rft.spage=6815&rft.epage=6824&rft.pages=6815-6824&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2017.2674606&rft_dat=%3Cproquest_cross%3E2174415861%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-3c28d50cb18e9d0e111e9dfa11be6e40a5e40969a6db4f786ef82f8e549bc1c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174415861&rft_id=info:pmid/&rft_ieee_id=7864343&rfr_iscdi=true