Loading…
Sliding Mode Observer-Based Heading Control for a Gliding Robotic Dolphin
This paper proposes a sliding mode observer (SMO)-based heading control method for the gliding motion of a dolphin-like gliding robot. A pair of flippers are employed to regulate gliding direction via differential actions, rather than actuators commonly used in traditional underwater gliders. The fr...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) 2017-08, Vol.64 (8), p.6815-6824 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-3c28d50cb18e9d0e111e9dfa11be6e40a5e40969a6db4f786ef82f8e549bc1c83 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-3c28d50cb18e9d0e111e9dfa11be6e40a5e40969a6db4f786ef82f8e549bc1c83 |
container_end_page | 6824 |
container_issue | 8 |
container_start_page | 6815 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 64 |
creator | Yuan, Jun Wu, Zhengxing Yu, Junzhi Tan, Min |
description | This paper proposes a sliding mode observer (SMO)-based heading control method for the gliding motion of a dolphin-like gliding robot. A pair of flippers are employed to regulate gliding direction via differential actions, rather than actuators commonly used in traditional underwater gliders. The framework of the control algorithm is established based on a derived dynamic model, including an SMO, a backstepping controller, and a solver for action commands of the flippers. Considering gliding velocity is indispensable for heading control but difficult to measure practically, we design the SMO to estimate gliding velocity by data acquired from a depth sensor and an attitude and heading reference system. Afterward, the backstepping methodology is applied to derive the heading control law. Further, a solver is designed to convert the controller's instruction to deflection angles of the flippers, which can simultaneously eliminate coupled but undesired roll and sideslip. Simulation results obtained demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1109/TIE.2017.2674606 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2017_2674606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7864343</ieee_id><sourcerecordid>2174415861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-3c28d50cb18e9d0e111e9dfa11be6e40a5e40969a6db4f786ef82f8e549bc1c83</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhS0EEqWwI7FYYk7xJbZjj1BKG6moEpTZcpILpApxsVMk_j0urVjuDffe3dNHyDWwCQDTd-tiNkkZ5JNU5lwyeUJGIESeaM3VKRmxNFcJY1yek4sQNowBFyBGpHjt2rrt3-mzq5GuyoD-G33yYAPWdIH2bzd1_eBdRxvnqaXzY-LFlW5oK_rouu1H21-Ss8Z2Aa-OOiZvT7P1dJEsV_Nier9MqlTDkGRVqmrBqhIU6pohAERtLECJEjmzIg4ttZV1yZtcSWxU2igUXJcVVCobk9vD3a13XzsMg9m4ne_jS5NCzjkIJSG62MFVeReCx8Zsfftp_Y8BZvbATARm9sDMEViM3BwiLSL-22MDnvEs-wVU6mXr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174415861</pqid></control><display><type>article</type><title>Sliding Mode Observer-Based Heading Control for a Gliding Robotic Dolphin</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yuan, Jun ; Wu, Zhengxing ; Yu, Junzhi ; Tan, Min</creator><creatorcontrib>Yuan, Jun ; Wu, Zhengxing ; Yu, Junzhi ; Tan, Min</creatorcontrib><description>This paper proposes a sliding mode observer (SMO)-based heading control method for the gliding motion of a dolphin-like gliding robot. A pair of flippers are employed to regulate gliding direction via differential actions, rather than actuators commonly used in traditional underwater gliders. The framework of the control algorithm is established based on a derived dynamic model, including an SMO, a backstepping controller, and a solver for action commands of the flippers. Considering gliding velocity is indispensable for heading control but difficult to measure practically, we design the SMO to estimate gliding velocity by data acquired from a depth sensor and an attitude and heading reference system. Afterward, the backstepping methodology is applied to derive the heading control law. Further, a solver is designed to convert the controller's instruction to deflection angles of the flippers, which can simultaneously eliminate coupled but undesired roll and sideslip. Simulation results obtained demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2017.2674606</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Bladder ; Computer simulation ; Control algorithms ; Control theory ; Data acquisition ; Dolphins ; Dynamic models ; Gliders ; Gliding ; Gliding robotic dolphin ; heading control ; Hydrodynamics ; Oils ; Reference systems ; Robot dynamics ; Robot kinematics ; Service robots ; Sideslip ; Sliding mode control ; sliding mode observer (SMO) ; underwater robotics</subject><ispartof>IEEE transactions on industrial electronics (1982), 2017-08, Vol.64 (8), p.6815-6824</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-3c28d50cb18e9d0e111e9dfa11be6e40a5e40969a6db4f786ef82f8e549bc1c83</citedby><cites>FETCH-LOGICAL-c291t-3c28d50cb18e9d0e111e9dfa11be6e40a5e40969a6db4f786ef82f8e549bc1c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7864343$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yuan, Jun</creatorcontrib><creatorcontrib>Wu, Zhengxing</creatorcontrib><creatorcontrib>Yu, Junzhi</creatorcontrib><creatorcontrib>Tan, Min</creatorcontrib><title>Sliding Mode Observer-Based Heading Control for a Gliding Robotic Dolphin</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper proposes a sliding mode observer (SMO)-based heading control method for the gliding motion of a dolphin-like gliding robot. A pair of flippers are employed to regulate gliding direction via differential actions, rather than actuators commonly used in traditional underwater gliders. The framework of the control algorithm is established based on a derived dynamic model, including an SMO, a backstepping controller, and a solver for action commands of the flippers. Considering gliding velocity is indispensable for heading control but difficult to measure practically, we design the SMO to estimate gliding velocity by data acquired from a depth sensor and an attitude and heading reference system. Afterward, the backstepping methodology is applied to derive the heading control law. Further, a solver is designed to convert the controller's instruction to deflection angles of the flippers, which can simultaneously eliminate coupled but undesired roll and sideslip. Simulation results obtained demonstrate the effectiveness of the proposed method.</description><subject>Actuators</subject><subject>Bladder</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Data acquisition</subject><subject>Dolphins</subject><subject>Dynamic models</subject><subject>Gliders</subject><subject>Gliding</subject><subject>Gliding robotic dolphin</subject><subject>heading control</subject><subject>Hydrodynamics</subject><subject>Oils</subject><subject>Reference systems</subject><subject>Robot dynamics</subject><subject>Robot kinematics</subject><subject>Service robots</subject><subject>Sideslip</subject><subject>Sliding mode control</subject><subject>sliding mode observer (SMO)</subject><subject>underwater robotics</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQhS0EEqWwI7FYYk7xJbZjj1BKG6moEpTZcpILpApxsVMk_j0urVjuDffe3dNHyDWwCQDTd-tiNkkZ5JNU5lwyeUJGIESeaM3VKRmxNFcJY1yek4sQNowBFyBGpHjt2rrt3-mzq5GuyoD-G33yYAPWdIH2bzd1_eBdRxvnqaXzY-LFlW5oK_rouu1H21-Ss8Z2Aa-OOiZvT7P1dJEsV_Nier9MqlTDkGRVqmrBqhIU6pohAERtLECJEjmzIg4ttZV1yZtcSWxU2igUXJcVVCobk9vD3a13XzsMg9m4ne_jS5NCzjkIJSG62MFVeReCx8Zsfftp_Y8BZvbATARm9sDMEViM3BwiLSL-22MDnvEs-wVU6mXr</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Yuan, Jun</creator><creator>Wu, Zhengxing</creator><creator>Yu, Junzhi</creator><creator>Tan, Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201708</creationdate><title>Sliding Mode Observer-Based Heading Control for a Gliding Robotic Dolphin</title><author>Yuan, Jun ; Wu, Zhengxing ; Yu, Junzhi ; Tan, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-3c28d50cb18e9d0e111e9dfa11be6e40a5e40969a6db4f786ef82f8e549bc1c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actuators</topic><topic>Bladder</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Data acquisition</topic><topic>Dolphins</topic><topic>Dynamic models</topic><topic>Gliders</topic><topic>Gliding</topic><topic>Gliding robotic dolphin</topic><topic>heading control</topic><topic>Hydrodynamics</topic><topic>Oils</topic><topic>Reference systems</topic><topic>Robot dynamics</topic><topic>Robot kinematics</topic><topic>Service robots</topic><topic>Sideslip</topic><topic>Sliding mode control</topic><topic>sliding mode observer (SMO)</topic><topic>underwater robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Jun</creatorcontrib><creatorcontrib>Wu, Zhengxing</creatorcontrib><creatorcontrib>Yu, Junzhi</creatorcontrib><creatorcontrib>Tan, Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Jun</au><au>Wu, Zhengxing</au><au>Yu, Junzhi</au><au>Tan, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliding Mode Observer-Based Heading Control for a Gliding Robotic Dolphin</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2017-08</date><risdate>2017</risdate><volume>64</volume><issue>8</issue><spage>6815</spage><epage>6824</epage><pages>6815-6824</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper proposes a sliding mode observer (SMO)-based heading control method for the gliding motion of a dolphin-like gliding robot. A pair of flippers are employed to regulate gliding direction via differential actions, rather than actuators commonly used in traditional underwater gliders. The framework of the control algorithm is established based on a derived dynamic model, including an SMO, a backstepping controller, and a solver for action commands of the flippers. Considering gliding velocity is indispensable for heading control but difficult to measure practically, we design the SMO to estimate gliding velocity by data acquired from a depth sensor and an attitude and heading reference system. Afterward, the backstepping methodology is applied to derive the heading control law. Further, a solver is designed to convert the controller's instruction to deflection angles of the flippers, which can simultaneously eliminate coupled but undesired roll and sideslip. Simulation results obtained demonstrate the effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2017.2674606</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2017-08, Vol.64 (8), p.6815-6824 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIE_2017_2674606 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Actuators Bladder Computer simulation Control algorithms Control theory Data acquisition Dolphins Dynamic models Gliders Gliding Gliding robotic dolphin heading control Hydrodynamics Oils Reference systems Robot dynamics Robot kinematics Service robots Sideslip Sliding mode control sliding mode observer (SMO) underwater robotics |
title | Sliding Mode Observer-Based Heading Control for a Gliding Robotic Dolphin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliding%20Mode%20Observer-Based%20Heading%20Control%20for%20a%20Gliding%20Robotic%20Dolphin&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Yuan,%20Jun&rft.date=2017-08&rft.volume=64&rft.issue=8&rft.spage=6815&rft.epage=6824&rft.pages=6815-6824&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2017.2674606&rft_dat=%3Cproquest_cross%3E2174415861%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-3c28d50cb18e9d0e111e9dfa11be6e40a5e40969a6db4f786ef82f8e549bc1c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2174415861&rft_id=info:pmid/&rft_ieee_id=7864343&rfr_iscdi=true |