Loading…
Indoor Sound Source Localization With Probabilistic Neural Network
It is known that adverse environments such as high reverberation and low signal-to-noise ratio (SNR) pose a great challenge to indoor sound source localization (SSL). To address this challenge, in this paper, we propose an SSL algorithm based on a probabilistic neural network, namely a generalized c...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) 2018-08, Vol.65 (8), p.6403-6413 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-526322da4406be7890983a97aa441063331e68dec3ce10d8f57f0cecbbd03ba33 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-526322da4406be7890983a97aa441063331e68dec3ce10d8f57f0cecbbd03ba33 |
container_end_page | 6413 |
container_issue | 8 |
container_start_page | 6403 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 65 |
creator | Sun, Yingxiang Chen, Jiajia Yuen, Chau Rahardja, Susanto |
description | It is known that adverse environments such as high reverberation and low signal-to-noise ratio (SNR) pose a great challenge to indoor sound source localization (SSL). To address this challenge, in this paper, we propose an SSL algorithm based on a probabilistic neural network, namely a generalized cross-correlation classification algorithm (GCA). Experimental results for adverse environments with high reverberation time T_{60} up to 600 ms and low SNR such as -10 dB show that the average azimuth angle error and elevation angle error by GCA are only 4.6° and 3.1°, respectively. Compared with three recently published algorithms, GCA has increased the success rate on direction of arrival estimation significantly with good robustness to environmental changes. These results show that the proposed GCA can localize accurately and robustly for diverse indoor applications where the site acoustic features can be studied prior to the localization stage. |
doi_str_mv | 10.1109/TIE.2017.2786219 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2017_2786219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8234649</ieee_id><sourcerecordid>2020704016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-526322da4406be7890983a97aa441063331e68dec3ce10d8f57f0cecbbd03ba33</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuC562Tj83HUUurhaKCFY8hm81i6rqpyRbRv96UFi_z4PHezPBD6BLDBGNQN6vFbEIAiwkRkhOsjtAIV5UolWLyGI0g2yUA46foLKU1AGYVrkbobtE3IcTiJWz7ZjejdcUyWNP5XzP40BdvfngvnmOoTe07nwZvi0e3jabLMnyH-HGOTlrTJXdx0DF6nc9W04dy-XS_mN4uS0sUHsqKcEpIYxgDXjshFShJjRImOxg4pRQ7LhtnqXUYGtlWogXrbF03QGtD6Rhd7_duYvjaujTodX63zyc1AQICGGCeU7BP2RhSiq7Vm-g_TfzRGPSOlM6k9I6UPpDKlat9xTvn_uOSUMaZon-ZhmO1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020704016</pqid></control><display><type>article</type><title>Indoor Sound Source Localization With Probabilistic Neural Network</title><source>IEEE Xplore (Online service)</source><creator>Sun, Yingxiang ; Chen, Jiajia ; Yuen, Chau ; Rahardja, Susanto</creator><creatorcontrib>Sun, Yingxiang ; Chen, Jiajia ; Yuen, Chau ; Rahardja, Susanto</creatorcontrib><description>It is known that adverse environments such as high reverberation and low signal-to-noise ratio (SNR) pose a great challenge to indoor sound source localization (SSL). To address this challenge, in this paper, we propose an SSL algorithm based on a probabilistic neural network, namely a generalized cross-correlation classification algorithm (GCA). Experimental results for adverse environments with high reverberation time <inline-formula> <tex-math notation="LaTeX">T_{60}</tex-math></inline-formula> up to 600 ms and low SNR such as -10 dB show that the average azimuth angle error and elevation angle error by GCA are only 4.6° and 3.1°, respectively. Compared with three recently published algorithms, GCA has increased the success rate on direction of arrival estimation significantly with good robustness to environmental changes. These results show that the proposed GCA can localize accurately and robustly for diverse indoor applications where the site acoustic features can be studied prior to the localization stage.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2017.2786219</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic noise ; Algorithms ; Classification algorithms ; Direction of arrival ; Direction of arrival (DOA) ; Direction-of-arrival estimation ; Elevation angle ; Estimation ; generalized cross correlation (GCC) ; Localization ; machine learning ; Microphone arrays ; Neural networks ; probabilistic neural network (PNN) ; Reverberation time ; Signal to noise ratio ; Sound localization ; sound source localization (SSL) ; Training</subject><ispartof>IEEE transactions on industrial electronics (1982), 2018-08, Vol.65 (8), p.6403-6413</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-526322da4406be7890983a97aa441063331e68dec3ce10d8f57f0cecbbd03ba33</citedby><cites>FETCH-LOGICAL-c291t-526322da4406be7890983a97aa441063331e68dec3ce10d8f57f0cecbbd03ba33</cites><orcidid>0000-0003-0831-6934 ; 0000-0001-5456-0757 ; 0000-0002-1642-8007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8234649$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sun, Yingxiang</creatorcontrib><creatorcontrib>Chen, Jiajia</creatorcontrib><creatorcontrib>Yuen, Chau</creatorcontrib><creatorcontrib>Rahardja, Susanto</creatorcontrib><title>Indoor Sound Source Localization With Probabilistic Neural Network</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>It is known that adverse environments such as high reverberation and low signal-to-noise ratio (SNR) pose a great challenge to indoor sound source localization (SSL). To address this challenge, in this paper, we propose an SSL algorithm based on a probabilistic neural network, namely a generalized cross-correlation classification algorithm (GCA). Experimental results for adverse environments with high reverberation time <inline-formula> <tex-math notation="LaTeX">T_{60}</tex-math></inline-formula> up to 600 ms and low SNR such as -10 dB show that the average azimuth angle error and elevation angle error by GCA are only 4.6° and 3.1°, respectively. Compared with three recently published algorithms, GCA has increased the success rate on direction of arrival estimation significantly with good robustness to environmental changes. These results show that the proposed GCA can localize accurately and robustly for diverse indoor applications where the site acoustic features can be studied prior to the localization stage.</description><subject>Acoustic noise</subject><subject>Algorithms</subject><subject>Classification algorithms</subject><subject>Direction of arrival</subject><subject>Direction of arrival (DOA)</subject><subject>Direction-of-arrival estimation</subject><subject>Elevation angle</subject><subject>Estimation</subject><subject>generalized cross correlation (GCC)</subject><subject>Localization</subject><subject>machine learning</subject><subject>Microphone arrays</subject><subject>Neural networks</subject><subject>probabilistic neural network (PNN)</subject><subject>Reverberation time</subject><subject>Signal to noise ratio</subject><subject>Sound localization</subject><subject>sound source localization (SSL)</subject><subject>Training</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3wcuC562Tj83HUUurhaKCFY8hm81i6rqpyRbRv96UFi_z4PHezPBD6BLDBGNQN6vFbEIAiwkRkhOsjtAIV5UolWLyGI0g2yUA46foLKU1AGYVrkbobtE3IcTiJWz7ZjejdcUyWNP5XzP40BdvfngvnmOoTe07nwZvi0e3jabLMnyH-HGOTlrTJXdx0DF6nc9W04dy-XS_mN4uS0sUHsqKcEpIYxgDXjshFShJjRImOxg4pRQ7LhtnqXUYGtlWogXrbF03QGtD6Rhd7_duYvjaujTodX63zyc1AQICGGCeU7BP2RhSiq7Vm-g_TfzRGPSOlM6k9I6UPpDKlat9xTvn_uOSUMaZon-ZhmO1</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Sun, Yingxiang</creator><creator>Chen, Jiajia</creator><creator>Yuen, Chau</creator><creator>Rahardja, Susanto</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0831-6934</orcidid><orcidid>https://orcid.org/0000-0001-5456-0757</orcidid><orcidid>https://orcid.org/0000-0002-1642-8007</orcidid></search><sort><creationdate>20180801</creationdate><title>Indoor Sound Source Localization With Probabilistic Neural Network</title><author>Sun, Yingxiang ; Chen, Jiajia ; Yuen, Chau ; Rahardja, Susanto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-526322da4406be7890983a97aa441063331e68dec3ce10d8f57f0cecbbd03ba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic noise</topic><topic>Algorithms</topic><topic>Classification algorithms</topic><topic>Direction of arrival</topic><topic>Direction of arrival (DOA)</topic><topic>Direction-of-arrival estimation</topic><topic>Elevation angle</topic><topic>Estimation</topic><topic>generalized cross correlation (GCC)</topic><topic>Localization</topic><topic>machine learning</topic><topic>Microphone arrays</topic><topic>Neural networks</topic><topic>probabilistic neural network (PNN)</topic><topic>Reverberation time</topic><topic>Signal to noise ratio</topic><topic>Sound localization</topic><topic>sound source localization (SSL)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yingxiang</creatorcontrib><creatorcontrib>Chen, Jiajia</creatorcontrib><creatorcontrib>Yuen, Chau</creatorcontrib><creatorcontrib>Rahardja, Susanto</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yingxiang</au><au>Chen, Jiajia</au><au>Yuen, Chau</au><au>Rahardja, Susanto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indoor Sound Source Localization With Probabilistic Neural Network</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>65</volume><issue>8</issue><spage>6403</spage><epage>6413</epage><pages>6403-6413</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>It is known that adverse environments such as high reverberation and low signal-to-noise ratio (SNR) pose a great challenge to indoor sound source localization (SSL). To address this challenge, in this paper, we propose an SSL algorithm based on a probabilistic neural network, namely a generalized cross-correlation classification algorithm (GCA). Experimental results for adverse environments with high reverberation time <inline-formula> <tex-math notation="LaTeX">T_{60}</tex-math></inline-formula> up to 600 ms and low SNR such as -10 dB show that the average azimuth angle error and elevation angle error by GCA are only 4.6° and 3.1°, respectively. Compared with three recently published algorithms, GCA has increased the success rate on direction of arrival estimation significantly with good robustness to environmental changes. These results show that the proposed GCA can localize accurately and robustly for diverse indoor applications where the site acoustic features can be studied prior to the localization stage.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2017.2786219</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0831-6934</orcidid><orcidid>https://orcid.org/0000-0001-5456-0757</orcidid><orcidid>https://orcid.org/0000-0002-1642-8007</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2018-08, Vol.65 (8), p.6403-6413 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIE_2017_2786219 |
source | IEEE Xplore (Online service) |
subjects | Acoustic noise Algorithms Classification algorithms Direction of arrival Direction of arrival (DOA) Direction-of-arrival estimation Elevation angle Estimation generalized cross correlation (GCC) Localization machine learning Microphone arrays Neural networks probabilistic neural network (PNN) Reverberation time Signal to noise ratio Sound localization sound source localization (SSL) Training |
title | Indoor Sound Source Localization With Probabilistic Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indoor%20Sound%20Source%20Localization%20With%20Probabilistic%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Sun,%20Yingxiang&rft.date=2018-08-01&rft.volume=65&rft.issue=8&rft.spage=6403&rft.epage=6413&rft.pages=6403-6413&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2017.2786219&rft_dat=%3Cproquest_cross%3E2020704016%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-526322da4406be7890983a97aa441063331e68dec3ce10d8f57f0cecbbd03ba33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2020704016&rft_id=info:pmid/&rft_ieee_id=8234649&rfr_iscdi=true |