Loading…

Indoor Sound Source Localization With Probabilistic Neural Network

It is known that adverse environments such as high reverberation and low signal-to-noise ratio (SNR) pose a great challenge to indoor sound source localization (SSL). To address this challenge, in this paper, we propose an SSL algorithm based on a probabilistic neural network, namely a generalized c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2018-08, Vol.65 (8), p.6403-6413
Main Authors: Sun, Yingxiang, Chen, Jiajia, Yuen, Chau, Rahardja, Susanto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-526322da4406be7890983a97aa441063331e68dec3ce10d8f57f0cecbbd03ba33
cites cdi_FETCH-LOGICAL-c291t-526322da4406be7890983a97aa441063331e68dec3ce10d8f57f0cecbbd03ba33
container_end_page 6413
container_issue 8
container_start_page 6403
container_title IEEE transactions on industrial electronics (1982)
container_volume 65
creator Sun, Yingxiang
Chen, Jiajia
Yuen, Chau
Rahardja, Susanto
description It is known that adverse environments such as high reverberation and low signal-to-noise ratio (SNR) pose a great challenge to indoor sound source localization (SSL). To address this challenge, in this paper, we propose an SSL algorithm based on a probabilistic neural network, namely a generalized cross-correlation classification algorithm (GCA). Experimental results for adverse environments with high reverberation time T_{60} up to 600 ms and low SNR such as -10 dB show that the average azimuth angle error and elevation angle error by GCA are only 4.6° and 3.1°, respectively. Compared with three recently published algorithms, GCA has increased the success rate on direction of arrival estimation significantly with good robustness to environmental changes. These results show that the proposed GCA can localize accurately and robustly for diverse indoor applications where the site acoustic features can be studied prior to the localization stage.
doi_str_mv 10.1109/TIE.2017.2786219
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2017_2786219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8234649</ieee_id><sourcerecordid>2020704016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-526322da4406be7890983a97aa441063331e68dec3ce10d8f57f0cecbbd03ba33</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuC562Tj83HUUurhaKCFY8hm81i6rqpyRbRv96UFi_z4PHezPBD6BLDBGNQN6vFbEIAiwkRkhOsjtAIV5UolWLyGI0g2yUA46foLKU1AGYVrkbobtE3IcTiJWz7ZjejdcUyWNP5XzP40BdvfngvnmOoTe07nwZvi0e3jabLMnyH-HGOTlrTJXdx0DF6nc9W04dy-XS_mN4uS0sUHsqKcEpIYxgDXjshFShJjRImOxg4pRQ7LhtnqXUYGtlWogXrbF03QGtD6Rhd7_duYvjaujTodX63zyc1AQICGGCeU7BP2RhSiq7Vm-g_TfzRGPSOlM6k9I6UPpDKlat9xTvn_uOSUMaZon-ZhmO1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020704016</pqid></control><display><type>article</type><title>Indoor Sound Source Localization With Probabilistic Neural Network</title><source>IEEE Xplore (Online service)</source><creator>Sun, Yingxiang ; Chen, Jiajia ; Yuen, Chau ; Rahardja, Susanto</creator><creatorcontrib>Sun, Yingxiang ; Chen, Jiajia ; Yuen, Chau ; Rahardja, Susanto</creatorcontrib><description>It is known that adverse environments such as high reverberation and low signal-to-noise ratio (SNR) pose a great challenge to indoor sound source localization (SSL). To address this challenge, in this paper, we propose an SSL algorithm based on a probabilistic neural network, namely a generalized cross-correlation classification algorithm (GCA). Experimental results for adverse environments with high reverberation time &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;T_{60}&lt;/tex-math&gt;&lt;/inline-formula&gt; up to 600 ms and low SNR such as -10 dB show that the average azimuth angle error and elevation angle error by GCA are only 4.6° and 3.1°, respectively. Compared with three recently published algorithms, GCA has increased the success rate on direction of arrival estimation significantly with good robustness to environmental changes. These results show that the proposed GCA can localize accurately and robustly for diverse indoor applications where the site acoustic features can be studied prior to the localization stage.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2017.2786219</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic noise ; Algorithms ; Classification algorithms ; Direction of arrival ; Direction of arrival (DOA) ; Direction-of-arrival estimation ; Elevation angle ; Estimation ; generalized cross correlation (GCC) ; Localization ; machine learning ; Microphone arrays ; Neural networks ; probabilistic neural network (PNN) ; Reverberation time ; Signal to noise ratio ; Sound localization ; sound source localization (SSL) ; Training</subject><ispartof>IEEE transactions on industrial electronics (1982), 2018-08, Vol.65 (8), p.6403-6413</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-526322da4406be7890983a97aa441063331e68dec3ce10d8f57f0cecbbd03ba33</citedby><cites>FETCH-LOGICAL-c291t-526322da4406be7890983a97aa441063331e68dec3ce10d8f57f0cecbbd03ba33</cites><orcidid>0000-0003-0831-6934 ; 0000-0001-5456-0757 ; 0000-0002-1642-8007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8234649$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sun, Yingxiang</creatorcontrib><creatorcontrib>Chen, Jiajia</creatorcontrib><creatorcontrib>Yuen, Chau</creatorcontrib><creatorcontrib>Rahardja, Susanto</creatorcontrib><title>Indoor Sound Source Localization With Probabilistic Neural Network</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>It is known that adverse environments such as high reverberation and low signal-to-noise ratio (SNR) pose a great challenge to indoor sound source localization (SSL). To address this challenge, in this paper, we propose an SSL algorithm based on a probabilistic neural network, namely a generalized cross-correlation classification algorithm (GCA). Experimental results for adverse environments with high reverberation time &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;T_{60}&lt;/tex-math&gt;&lt;/inline-formula&gt; up to 600 ms and low SNR such as -10 dB show that the average azimuth angle error and elevation angle error by GCA are only 4.6° and 3.1°, respectively. Compared with three recently published algorithms, GCA has increased the success rate on direction of arrival estimation significantly with good robustness to environmental changes. These results show that the proposed GCA can localize accurately and robustly for diverse indoor applications where the site acoustic features can be studied prior to the localization stage.</description><subject>Acoustic noise</subject><subject>Algorithms</subject><subject>Classification algorithms</subject><subject>Direction of arrival</subject><subject>Direction of arrival (DOA)</subject><subject>Direction-of-arrival estimation</subject><subject>Elevation angle</subject><subject>Estimation</subject><subject>generalized cross correlation (GCC)</subject><subject>Localization</subject><subject>machine learning</subject><subject>Microphone arrays</subject><subject>Neural networks</subject><subject>probabilistic neural network (PNN)</subject><subject>Reverberation time</subject><subject>Signal to noise ratio</subject><subject>Sound localization</subject><subject>sound source localization (SSL)</subject><subject>Training</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEQxYMoWKt3wcuC562Tj83HUUurhaKCFY8hm81i6rqpyRbRv96UFi_z4PHezPBD6BLDBGNQN6vFbEIAiwkRkhOsjtAIV5UolWLyGI0g2yUA46foLKU1AGYVrkbobtE3IcTiJWz7ZjejdcUyWNP5XzP40BdvfngvnmOoTe07nwZvi0e3jabLMnyH-HGOTlrTJXdx0DF6nc9W04dy-XS_mN4uS0sUHsqKcEpIYxgDXjshFShJjRImOxg4pRQ7LhtnqXUYGtlWogXrbF03QGtD6Rhd7_duYvjaujTodX63zyc1AQICGGCeU7BP2RhSiq7Vm-g_TfzRGPSOlM6k9I6UPpDKlat9xTvn_uOSUMaZon-ZhmO1</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Sun, Yingxiang</creator><creator>Chen, Jiajia</creator><creator>Yuen, Chau</creator><creator>Rahardja, Susanto</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0831-6934</orcidid><orcidid>https://orcid.org/0000-0001-5456-0757</orcidid><orcidid>https://orcid.org/0000-0002-1642-8007</orcidid></search><sort><creationdate>20180801</creationdate><title>Indoor Sound Source Localization With Probabilistic Neural Network</title><author>Sun, Yingxiang ; Chen, Jiajia ; Yuen, Chau ; Rahardja, Susanto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-526322da4406be7890983a97aa441063331e68dec3ce10d8f57f0cecbbd03ba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic noise</topic><topic>Algorithms</topic><topic>Classification algorithms</topic><topic>Direction of arrival</topic><topic>Direction of arrival (DOA)</topic><topic>Direction-of-arrival estimation</topic><topic>Elevation angle</topic><topic>Estimation</topic><topic>generalized cross correlation (GCC)</topic><topic>Localization</topic><topic>machine learning</topic><topic>Microphone arrays</topic><topic>Neural networks</topic><topic>probabilistic neural network (PNN)</topic><topic>Reverberation time</topic><topic>Signal to noise ratio</topic><topic>Sound localization</topic><topic>sound source localization (SSL)</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yingxiang</creatorcontrib><creatorcontrib>Chen, Jiajia</creatorcontrib><creatorcontrib>Yuen, Chau</creatorcontrib><creatorcontrib>Rahardja, Susanto</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yingxiang</au><au>Chen, Jiajia</au><au>Yuen, Chau</au><au>Rahardja, Susanto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indoor Sound Source Localization With Probabilistic Neural Network</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>65</volume><issue>8</issue><spage>6403</spage><epage>6413</epage><pages>6403-6413</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>It is known that adverse environments such as high reverberation and low signal-to-noise ratio (SNR) pose a great challenge to indoor sound source localization (SSL). To address this challenge, in this paper, we propose an SSL algorithm based on a probabilistic neural network, namely a generalized cross-correlation classification algorithm (GCA). Experimental results for adverse environments with high reverberation time &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;T_{60}&lt;/tex-math&gt;&lt;/inline-formula&gt; up to 600 ms and low SNR such as -10 dB show that the average azimuth angle error and elevation angle error by GCA are only 4.6° and 3.1°, respectively. Compared with three recently published algorithms, GCA has increased the success rate on direction of arrival estimation significantly with good robustness to environmental changes. These results show that the proposed GCA can localize accurately and robustly for diverse indoor applications where the site acoustic features can be studied prior to the localization stage.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2017.2786219</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0831-6934</orcidid><orcidid>https://orcid.org/0000-0001-5456-0757</orcidid><orcidid>https://orcid.org/0000-0002-1642-8007</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2018-08, Vol.65 (8), p.6403-6413
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_TIE_2017_2786219
source IEEE Xplore (Online service)
subjects Acoustic noise
Algorithms
Classification algorithms
Direction of arrival
Direction of arrival (DOA)
Direction-of-arrival estimation
Elevation angle
Estimation
generalized cross correlation (GCC)
Localization
machine learning
Microphone arrays
Neural networks
probabilistic neural network (PNN)
Reverberation time
Signal to noise ratio
Sound localization
sound source localization (SSL)
Training
title Indoor Sound Source Localization With Probabilistic Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indoor%20Sound%20Source%20Localization%20With%20Probabilistic%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Sun,%20Yingxiang&rft.date=2018-08-01&rft.volume=65&rft.issue=8&rft.spage=6403&rft.epage=6413&rft.pages=6403-6413&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2017.2786219&rft_dat=%3Cproquest_cross%3E2020704016%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-526322da4406be7890983a97aa441063331e68dec3ce10d8f57f0cecbbd03ba33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2020704016&rft_id=info:pmid/&rft_ieee_id=8234649&rfr_iscdi=true