Loading…

Design and Analysis of a Magnetic-Field Modulated Brushless Double-Rotor Machine-Part II: Winding Configuration

The analysis of Part I shows that the integer-slot winding of the magnetic-field modulated brushless double-rotor machine (MFM-BDRM) can obtain very sinusoidal no-load and load back electromotive force (EMF) and quite small torque ripple under an optimal pole-pair combination of stator, permanent ma...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2019-04, Vol.66 (4), p.2550-2560
Main Authors: Bai, Jingang, Liu, Jiaqi, Zheng, Ping, Tong, Chengde
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-7bd4124af3d722d2a093755e379b260364e5c1f671d7335be68d201004de5e2d3
cites cdi_FETCH-LOGICAL-c291t-7bd4124af3d722d2a093755e379b260364e5c1f671d7335be68d201004de5e2d3
container_end_page 2560
container_issue 4
container_start_page 2550
container_title IEEE transactions on industrial electronics (1982)
container_volume 66
creator Bai, Jingang
Liu, Jiaqi
Zheng, Ping
Tong, Chengde
description The analysis of Part I shows that the integer-slot winding of the magnetic-field modulated brushless double-rotor machine (MFM-BDRM) can obtain very sinusoidal no-load and load back electromotive force (EMF) and quite small torque ripple under an optimal pole-pair combination of stator, permanent magnet (PM) rotor, and magnetic blocks. In practical applications, however, the integer-slot winding is usually replaced by the fractional-slot concentrated winding (FSCW), which can reduce end windings and easily realize automatic winding. This paper focuses on the influence of the FSCW on the electromagnetic performance of the MFM-BDRM and the application feasibility of the FSCW in the MFM-BDRM. First, the formation mechanism of the harmonic back EMF of FSCW is investigated. Then the pole-pair combination law of stator, PM rotor, and magnetic block for the FSCW of the MFM-BDRM is further investigated. Second, the specific FSCW of the MFM-BDRM with Q = 2p s ± 1 and Q = 2p s ± 2 and the integer-slot MFM-BDRM are comparatively investigated. It shows that the integer-slot winding of the MFM-BDRM is superior to the FSCW of the MFM-BDRM in no-load and load back EMF, torque ripple, maximum torque outputting capability, and power factor. Finally, the optimal winding configuration of the MFM-BDRM is determined. A prototype of the MFMBDRM with the optimal winding configuration and pole-pair combination is designed and manufactured. The theoretical and finite-element analysis is verified by experiments.
doi_str_mv 10.1109/TIE.2018.2842736
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIE_2018_2842736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8375108</ieee_id><sourcerecordid>2151465236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-7bd4124af3d722d2a093755e379b260364e5c1f671d7335be68d201004de5e2d3</originalsourceid><addsrcrecordid>eNo9kDtPwzAUhS0EEqWwI7FYYk7xI44TttIHRGoFQkWMkRPfpK6CXexk6L8nVSumu3zn6J4PoXtKJpSS7GmTLyaM0HTC0phJnlygERVCRlkWp5doRJhMI0Li5BrdhLAjhMaCihFycwimsVhZjadWtYdgAnY1VnitGgudqaKlgVbjtdN9qzrQ-MX3YdtCCHju-rKF6NN1zg98tTUWog_lO5znz_jbWG1sg2fO1qbpveqMs7foqlZtgLvzHaOv5WIze4tW76_5bLqKKpbRLpKljimLVc21ZEwzRTIuhQAus5IlhCcxiIrWiaRaci5KSFI9rB8GahDANB-jx1Pv3rvfHkJX7Fzvh4GhYFTQOBGMJwNFTlTlXQge6mLvzY_yh4KS4qi1GLQWR63FWesQeThFDAD84-nwHSUp_wNh4nJu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151465236</pqid></control><display><type>article</type><title>Design and Analysis of a Magnetic-Field Modulated Brushless Double-Rotor Machine-Part II: Winding Configuration</title><source>IEEE Xplore (Online service)</source><creator>Bai, Jingang ; Liu, Jiaqi ; Zheng, Ping ; Tong, Chengde</creator><creatorcontrib>Bai, Jingang ; Liu, Jiaqi ; Zheng, Ping ; Tong, Chengde</creatorcontrib><description>The analysis of Part I shows that the integer-slot winding of the magnetic-field modulated brushless double-rotor machine (MFM-BDRM) can obtain very sinusoidal no-load and load back electromotive force (EMF) and quite small torque ripple under an optimal pole-pair combination of stator, permanent magnet (PM) rotor, and magnetic blocks. In practical applications, however, the integer-slot winding is usually replaced by the fractional-slot concentrated winding (FSCW), which can reduce end windings and easily realize automatic winding. This paper focuses on the influence of the FSCW on the electromagnetic performance of the MFM-BDRM and the application feasibility of the FSCW in the MFM-BDRM. First, the formation mechanism of the harmonic back EMF of FSCW is investigated. Then the pole-pair combination law of stator, PM rotor, and magnetic block for the FSCW of the MFM-BDRM is further investigated. Second, the specific FSCW of the MFM-BDRM with Q = 2p s ± 1 and Q = 2p s ± 2 and the integer-slot MFM-BDRM are comparatively investigated. It shows that the integer-slot winding of the MFM-BDRM is superior to the FSCW of the MFM-BDRM in no-load and load back EMF, torque ripple, maximum torque outputting capability, and power factor. Finally, the optimal winding configuration of the MFM-BDRM is determined. A prototype of the MFMBDRM with the optimal winding configuration and pole-pair combination is designed and manufactured. The theoretical and finite-element analysis is verified by experiments.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2018.2842736</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Back electromotive force ; Brushless double-rotor machine ; Coils (windings) ; Configurations ; design ; Electromotive forces ; Finite element method ; fractional-slot concentrated winding (FSCW) ; Harmonic analysis ; harmonic back electromotive force (EMF) ; hybrid electric vehicles ; integer-slot winding ; Magnetic fields ; magnetic-field modulated ; Permanent magnets ; Power capacitors ; Power factor ; Product design ; Rotors ; Stator windings ; Stators ; Torque ; Winding ; Windings</subject><ispartof>IEEE transactions on industrial electronics (1982), 2019-04, Vol.66 (4), p.2550-2560</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-7bd4124af3d722d2a093755e379b260364e5c1f671d7335be68d201004de5e2d3</citedby><cites>FETCH-LOGICAL-c291t-7bd4124af3d722d2a093755e379b260364e5c1f671d7335be68d201004de5e2d3</cites><orcidid>0000-0001-5418-494X ; 0000-0002-9350-8086 ; 0000-0003-2780-9005 ; 0000-0002-6162-3733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8375108$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Bai, Jingang</creatorcontrib><creatorcontrib>Liu, Jiaqi</creatorcontrib><creatorcontrib>Zheng, Ping</creatorcontrib><creatorcontrib>Tong, Chengde</creatorcontrib><title>Design and Analysis of a Magnetic-Field Modulated Brushless Double-Rotor Machine-Part II: Winding Configuration</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>The analysis of Part I shows that the integer-slot winding of the magnetic-field modulated brushless double-rotor machine (MFM-BDRM) can obtain very sinusoidal no-load and load back electromotive force (EMF) and quite small torque ripple under an optimal pole-pair combination of stator, permanent magnet (PM) rotor, and magnetic blocks. In practical applications, however, the integer-slot winding is usually replaced by the fractional-slot concentrated winding (FSCW), which can reduce end windings and easily realize automatic winding. This paper focuses on the influence of the FSCW on the electromagnetic performance of the MFM-BDRM and the application feasibility of the FSCW in the MFM-BDRM. First, the formation mechanism of the harmonic back EMF of FSCW is investigated. Then the pole-pair combination law of stator, PM rotor, and magnetic block for the FSCW of the MFM-BDRM is further investigated. Second, the specific FSCW of the MFM-BDRM with Q = 2p s ± 1 and Q = 2p s ± 2 and the integer-slot MFM-BDRM are comparatively investigated. It shows that the integer-slot winding of the MFM-BDRM is superior to the FSCW of the MFM-BDRM in no-load and load back EMF, torque ripple, maximum torque outputting capability, and power factor. Finally, the optimal winding configuration of the MFM-BDRM is determined. A prototype of the MFMBDRM with the optimal winding configuration and pole-pair combination is designed and manufactured. The theoretical and finite-element analysis is verified by experiments.</description><subject>Back electromotive force</subject><subject>Brushless double-rotor machine</subject><subject>Coils (windings)</subject><subject>Configurations</subject><subject>design</subject><subject>Electromotive forces</subject><subject>Finite element method</subject><subject>fractional-slot concentrated winding (FSCW)</subject><subject>Harmonic analysis</subject><subject>harmonic back electromotive force (EMF)</subject><subject>hybrid electric vehicles</subject><subject>integer-slot winding</subject><subject>Magnetic fields</subject><subject>magnetic-field modulated</subject><subject>Permanent magnets</subject><subject>Power capacitors</subject><subject>Power factor</subject><subject>Product design</subject><subject>Rotors</subject><subject>Stator windings</subject><subject>Stators</subject><subject>Torque</subject><subject>Winding</subject><subject>Windings</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPwzAUhS0EEqWwI7FYYk7xI44TttIHRGoFQkWMkRPfpK6CXexk6L8nVSumu3zn6J4PoXtKJpSS7GmTLyaM0HTC0phJnlygERVCRlkWp5doRJhMI0Li5BrdhLAjhMaCihFycwimsVhZjadWtYdgAnY1VnitGgudqaKlgVbjtdN9qzrQ-MX3YdtCCHju-rKF6NN1zg98tTUWog_lO5znz_jbWG1sg2fO1qbpveqMs7foqlZtgLvzHaOv5WIze4tW76_5bLqKKpbRLpKljimLVc21ZEwzRTIuhQAus5IlhCcxiIrWiaRaci5KSFI9rB8GahDANB-jx1Pv3rvfHkJX7Fzvh4GhYFTQOBGMJwNFTlTlXQge6mLvzY_yh4KS4qi1GLQWR63FWesQeThFDAD84-nwHSUp_wNh4nJu</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Bai, Jingang</creator><creator>Liu, Jiaqi</creator><creator>Zheng, Ping</creator><creator>Tong, Chengde</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5418-494X</orcidid><orcidid>https://orcid.org/0000-0002-9350-8086</orcidid><orcidid>https://orcid.org/0000-0003-2780-9005</orcidid><orcidid>https://orcid.org/0000-0002-6162-3733</orcidid></search><sort><creationdate>20190401</creationdate><title>Design and Analysis of a Magnetic-Field Modulated Brushless Double-Rotor Machine-Part II: Winding Configuration</title><author>Bai, Jingang ; Liu, Jiaqi ; Zheng, Ping ; Tong, Chengde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-7bd4124af3d722d2a093755e379b260364e5c1f671d7335be68d201004de5e2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Back electromotive force</topic><topic>Brushless double-rotor machine</topic><topic>Coils (windings)</topic><topic>Configurations</topic><topic>design</topic><topic>Electromotive forces</topic><topic>Finite element method</topic><topic>fractional-slot concentrated winding (FSCW)</topic><topic>Harmonic analysis</topic><topic>harmonic back electromotive force (EMF)</topic><topic>hybrid electric vehicles</topic><topic>integer-slot winding</topic><topic>Magnetic fields</topic><topic>magnetic-field modulated</topic><topic>Permanent magnets</topic><topic>Power capacitors</topic><topic>Power factor</topic><topic>Product design</topic><topic>Rotors</topic><topic>Stator windings</topic><topic>Stators</topic><topic>Torque</topic><topic>Winding</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Jingang</creatorcontrib><creatorcontrib>Liu, Jiaqi</creatorcontrib><creatorcontrib>Zheng, Ping</creatorcontrib><creatorcontrib>Tong, Chengde</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Jingang</au><au>Liu, Jiaqi</au><au>Zheng, Ping</au><au>Tong, Chengde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Analysis of a Magnetic-Field Modulated Brushless Double-Rotor Machine-Part II: Winding Configuration</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>66</volume><issue>4</issue><spage>2550</spage><epage>2560</epage><pages>2550-2560</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>The analysis of Part I shows that the integer-slot winding of the magnetic-field modulated brushless double-rotor machine (MFM-BDRM) can obtain very sinusoidal no-load and load back electromotive force (EMF) and quite small torque ripple under an optimal pole-pair combination of stator, permanent magnet (PM) rotor, and magnetic blocks. In practical applications, however, the integer-slot winding is usually replaced by the fractional-slot concentrated winding (FSCW), which can reduce end windings and easily realize automatic winding. This paper focuses on the influence of the FSCW on the electromagnetic performance of the MFM-BDRM and the application feasibility of the FSCW in the MFM-BDRM. First, the formation mechanism of the harmonic back EMF of FSCW is investigated. Then the pole-pair combination law of stator, PM rotor, and magnetic block for the FSCW of the MFM-BDRM is further investigated. Second, the specific FSCW of the MFM-BDRM with Q = 2p s ± 1 and Q = 2p s ± 2 and the integer-slot MFM-BDRM are comparatively investigated. It shows that the integer-slot winding of the MFM-BDRM is superior to the FSCW of the MFM-BDRM in no-load and load back EMF, torque ripple, maximum torque outputting capability, and power factor. Finally, the optimal winding configuration of the MFM-BDRM is determined. A prototype of the MFMBDRM with the optimal winding configuration and pole-pair combination is designed and manufactured. The theoretical and finite-element analysis is verified by experiments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2018.2842736</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5418-494X</orcidid><orcidid>https://orcid.org/0000-0002-9350-8086</orcidid><orcidid>https://orcid.org/0000-0003-2780-9005</orcidid><orcidid>https://orcid.org/0000-0002-6162-3733</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2019-04, Vol.66 (4), p.2550-2560
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_TIE_2018_2842736
source IEEE Xplore (Online service)
subjects Back electromotive force
Brushless double-rotor machine
Coils (windings)
Configurations
design
Electromotive forces
Finite element method
fractional-slot concentrated winding (FSCW)
Harmonic analysis
harmonic back electromotive force (EMF)
hybrid electric vehicles
integer-slot winding
Magnetic fields
magnetic-field modulated
Permanent magnets
Power capacitors
Power factor
Product design
Rotors
Stator windings
Stators
Torque
Winding
Windings
title Design and Analysis of a Magnetic-Field Modulated Brushless Double-Rotor Machine-Part II: Winding Configuration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Analysis%20of%20a%20Magnetic-Field%20Modulated%20Brushless%20Double-Rotor%20Machine-Part%20II:%20Winding%20Configuration&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Bai,%20Jingang&rft.date=2019-04-01&rft.volume=66&rft.issue=4&rft.spage=2550&rft.epage=2560&rft.pages=2550-2560&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2018.2842736&rft_dat=%3Cproquest_cross%3E2151465236%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-7bd4124af3d722d2a093755e379b260364e5c1f671d7335be68d201004de5e2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2151465236&rft_id=info:pmid/&rft_ieee_id=8375108&rfr_iscdi=true