Loading…

Privacy Against a Hypothesis Testing Adversary

Privacy against an adversary (AD) that tries to detect the underlying privacy-sensitive data distribution is studied. The original data sequence is assumed to come from one of the two known distributions, and the privacy leakage is measured by the probability of error of the binary hypothesis test c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information forensics and security 2019-06, Vol.14 (6), p.1567-1581
Main Authors: Zuxing Li, Oechtering, Tobias J., Gunduz, Deniz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c374t-5bd21fa3332bd0f06bf774c1a811090e5ae0e41b2a0317599bcd08b093b14a503
cites cdi_FETCH-LOGICAL-c374t-5bd21fa3332bd0f06bf774c1a811090e5ae0e41b2a0317599bcd08b093b14a503
container_end_page 1581
container_issue 6
container_start_page 1567
container_title IEEE transactions on information forensics and security
container_volume 14
creator Zuxing Li
Oechtering, Tobias J.
Gunduz, Deniz
description Privacy against an adversary (AD) that tries to detect the underlying privacy-sensitive data distribution is studied. The original data sequence is assumed to come from one of the two known distributions, and the privacy leakage is measured by the probability of error of the binary hypothesis test carried out by the AD. A management unit (MU) is allowed to manipulate the original data sequence in an online fashion while satisfying an average distortion constraint. The goal of the MU is to maximize the minimal type II probability of error subject to a constraint on the type I probability of error assuming an adversarial Neyman-Pearson test, or to maximize the minimal error probability assuming an adversarial Bayesian test. The asymptotic exponents of the maximum minimal type II probability of error and the maximum minimal error probability are shown to be characterized by a Kullback-Leibler divergence rate and a Chernoff information rate, respectively. Privacy performances of particular management policies, the memoryless hypothesis-aware policy and the hypothesis-unaware policy with memory, are compared. The proposed formulation can also model adversarial example generation with minimal data manipulation to fool classifiers. At last, the results are applied to a smart meter privacy problem, where the user's energy consumption is manipulated by adaptively using a renewable energy source in order to hide user's activity from the energy provider.
doi_str_mv 10.1109/TIFS.2018.2882343
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIFS_2018_2882343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8540911</ieee_id><sourcerecordid>2188601113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-5bd21fa3332bd0f06bf774c1a811090e5ae0e41b2a0317599bcd08b093b14a503</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqXwAYhLJM4Ju7aTOMcIKK1UCSQKV8tOnNYFmmKnRf17HKXqaffwZnZ2CLlFSBCheFjMJu8JBRQJFYIyzs7ICNM0izOgeH7akV2SK-_XAJxjJkYkeXN2r6pDVC6V3fguUtH0sG27lfHWRwvjO7tZRmW9N84rd7gmF4369ubmOMfkY_K8eJzG89eX2WM5jyuW8y5OdU2xUYwxqmtoINNNnvMKlejDgkmVAcNRUwUM87QodFWD0FAwjVylwMYkHnz9n9nutNw6-xPOy1ZZ-WQ_S9m6pfzqVpLyPC9E4O8Hfuva311ILdftzm1CRElRiPA4IgsUDlTlWu-daU6-CLJPJvsaZV-jPNYYNHeDxhpjTrxIORTB8h_fNWyR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188601113</pqid></control><display><type>article</type><title>Privacy Against a Hypothesis Testing Adversary</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zuxing Li ; Oechtering, Tobias J. ; Gunduz, Deniz</creator><creatorcontrib>Zuxing Li ; Oechtering, Tobias J. ; Gunduz, Deniz</creatorcontrib><description>Privacy against an adversary (AD) that tries to detect the underlying privacy-sensitive data distribution is studied. The original data sequence is assumed to come from one of the two known distributions, and the privacy leakage is measured by the probability of error of the binary hypothesis test carried out by the AD. A management unit (MU) is allowed to manipulate the original data sequence in an online fashion while satisfying an average distortion constraint. The goal of the MU is to maximize the minimal type II probability of error subject to a constraint on the type I probability of error assuming an adversarial Neyman-Pearson test, or to maximize the minimal error probability assuming an adversarial Bayesian test. The asymptotic exponents of the maximum minimal type II probability of error and the maximum minimal error probability are shown to be characterized by a Kullback-Leibler divergence rate and a Chernoff information rate, respectively. Privacy performances of particular management policies, the memoryless hypothesis-aware policy and the hypothesis-unaware policy with memory, are compared. The proposed formulation can also model adversarial example generation with minimal data manipulation to fool classifiers. At last, the results are applied to a smart meter privacy problem, where the user's energy consumption is manipulated by adaptively using a renewable energy source in order to hide user's activity from the energy provider.</description><identifier>ISSN: 1556-6013</identifier><identifier>ISSN: 1556-6021</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2018.2882343</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayes methods ; Bayesian analysis ; Bayesian test ; Codes ; Data privacy ; Distortion ; Divergence ; Energy consumption ; Error analysis ; Hypotheses ; Hypothesis testing ; information theory ; large deviations ; Measurement uncertainty ; Neyman-Pearson test ; Privacy ; privacy-enhancing technology ; Smart meters ; Testing</subject><ispartof>IEEE transactions on information forensics and security, 2019-06, Vol.14 (6), p.1567-1581</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-5bd21fa3332bd0f06bf774c1a811090e5ae0e41b2a0317599bcd08b093b14a503</citedby><cites>FETCH-LOGICAL-c374t-5bd21fa3332bd0f06bf774c1a811090e5ae0e41b2a0317599bcd08b093b14a503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8540911$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-247798$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Zuxing Li</creatorcontrib><creatorcontrib>Oechtering, Tobias J.</creatorcontrib><creatorcontrib>Gunduz, Deniz</creatorcontrib><title>Privacy Against a Hypothesis Testing Adversary</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Privacy against an adversary (AD) that tries to detect the underlying privacy-sensitive data distribution is studied. The original data sequence is assumed to come from one of the two known distributions, and the privacy leakage is measured by the probability of error of the binary hypothesis test carried out by the AD. A management unit (MU) is allowed to manipulate the original data sequence in an online fashion while satisfying an average distortion constraint. The goal of the MU is to maximize the minimal type II probability of error subject to a constraint on the type I probability of error assuming an adversarial Neyman-Pearson test, or to maximize the minimal error probability assuming an adversarial Bayesian test. The asymptotic exponents of the maximum minimal type II probability of error and the maximum minimal error probability are shown to be characterized by a Kullback-Leibler divergence rate and a Chernoff information rate, respectively. Privacy performances of particular management policies, the memoryless hypothesis-aware policy and the hypothesis-unaware policy with memory, are compared. The proposed formulation can also model adversarial example generation with minimal data manipulation to fool classifiers. At last, the results are applied to a smart meter privacy problem, where the user's energy consumption is manipulated by adaptively using a renewable energy source in order to hide user's activity from the energy provider.</description><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian test</subject><subject>Codes</subject><subject>Data privacy</subject><subject>Distortion</subject><subject>Divergence</subject><subject>Energy consumption</subject><subject>Error analysis</subject><subject>Hypotheses</subject><subject>Hypothesis testing</subject><subject>information theory</subject><subject>large deviations</subject><subject>Measurement uncertainty</subject><subject>Neyman-Pearson test</subject><subject>Privacy</subject><subject>privacy-enhancing technology</subject><subject>Smart meters</subject><subject>Testing</subject><issn>1556-6013</issn><issn>1556-6021</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAQRC0EEqXwAYhLJM4Ju7aTOMcIKK1UCSQKV8tOnNYFmmKnRf17HKXqaffwZnZ2CLlFSBCheFjMJu8JBRQJFYIyzs7ICNM0izOgeH7akV2SK-_XAJxjJkYkeXN2r6pDVC6V3fguUtH0sG27lfHWRwvjO7tZRmW9N84rd7gmF4369ubmOMfkY_K8eJzG89eX2WM5jyuW8y5OdU2xUYwxqmtoINNNnvMKlejDgkmVAcNRUwUM87QodFWD0FAwjVylwMYkHnz9n9nutNw6-xPOy1ZZ-WQ_S9m6pfzqVpLyPC9E4O8Hfuva311ILdftzm1CRElRiPA4IgsUDlTlWu-daU6-CLJPJvsaZV-jPNYYNHeDxhpjTrxIORTB8h_fNWyR</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Zuxing Li</creator><creator>Oechtering, Tobias J.</creator><creator>Gunduz, Deniz</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope></search><sort><creationdate>20190601</creationdate><title>Privacy Against a Hypothesis Testing Adversary</title><author>Zuxing Li ; Oechtering, Tobias J. ; Gunduz, Deniz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-5bd21fa3332bd0f06bf774c1a811090e5ae0e41b2a0317599bcd08b093b14a503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian test</topic><topic>Codes</topic><topic>Data privacy</topic><topic>Distortion</topic><topic>Divergence</topic><topic>Energy consumption</topic><topic>Error analysis</topic><topic>Hypotheses</topic><topic>Hypothesis testing</topic><topic>information theory</topic><topic>large deviations</topic><topic>Measurement uncertainty</topic><topic>Neyman-Pearson test</topic><topic>Privacy</topic><topic>privacy-enhancing technology</topic><topic>Smart meters</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuxing Li</creatorcontrib><creatorcontrib>Oechtering, Tobias J.</creatorcontrib><creatorcontrib>Gunduz, Deniz</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuxing Li</au><au>Oechtering, Tobias J.</au><au>Gunduz, Deniz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Privacy Against a Hypothesis Testing Adversary</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>14</volume><issue>6</issue><spage>1567</spage><epage>1581</epage><pages>1567-1581</pages><issn>1556-6013</issn><issn>1556-6021</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Privacy against an adversary (AD) that tries to detect the underlying privacy-sensitive data distribution is studied. The original data sequence is assumed to come from one of the two known distributions, and the privacy leakage is measured by the probability of error of the binary hypothesis test carried out by the AD. A management unit (MU) is allowed to manipulate the original data sequence in an online fashion while satisfying an average distortion constraint. The goal of the MU is to maximize the minimal type II probability of error subject to a constraint on the type I probability of error assuming an adversarial Neyman-Pearson test, or to maximize the minimal error probability assuming an adversarial Bayesian test. The asymptotic exponents of the maximum minimal type II probability of error and the maximum minimal error probability are shown to be characterized by a Kullback-Leibler divergence rate and a Chernoff information rate, respectively. Privacy performances of particular management policies, the memoryless hypothesis-aware policy and the hypothesis-unaware policy with memory, are compared. The proposed formulation can also model adversarial example generation with minimal data manipulation to fool classifiers. At last, the results are applied to a smart meter privacy problem, where the user's energy consumption is manipulated by adaptively using a renewable energy source in order to hide user's activity from the energy provider.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2018.2882343</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2019-06, Vol.14 (6), p.1567-1581
issn 1556-6013
1556-6021
1556-6021
language eng
recordid cdi_crossref_primary_10_1109_TIFS_2018_2882343
source IEEE Electronic Library (IEL) Journals
subjects Bayes methods
Bayesian analysis
Bayesian test
Codes
Data privacy
Distortion
Divergence
Energy consumption
Error analysis
Hypotheses
Hypothesis testing
information theory
large deviations
Measurement uncertainty
Neyman-Pearson test
Privacy
privacy-enhancing technology
Smart meters
Testing
title Privacy Against a Hypothesis Testing Adversary
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Privacy%20Against%20a%20Hypothesis%20Testing%20Adversary&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Zuxing%20Li&rft.date=2019-06-01&rft.volume=14&rft.issue=6&rft.spage=1567&rft.epage=1581&rft.pages=1567-1581&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2018.2882343&rft_dat=%3Cproquest_cross%3E2188601113%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-5bd21fa3332bd0f06bf774c1a811090e5ae0e41b2a0317599bcd08b093b14a503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2188601113&rft_id=info:pmid/&rft_ieee_id=8540911&rfr_iscdi=true