Loading…

DPlanner: A Privacy Budgeting System for Utility

Differential privacy has been deployed to machine learning platforms to preserve the privacy of data in use. A long neglected but important fact is that data privacy is a non-replenishable resource and should be carefully scheduled to maximize its utility gain. In this work, we propose a new privacy...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information forensics and security 2023-01, Vol.18, p.1-1
Main Authors: Li, Weiting, Xiang, Liyao, Guo, Bin, Li, Zhetao, Wang, Xinbing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-5e86744dad8080bb572b1d1be3eac74893deab287bfe4f7030b312655a060af33
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on information forensics and security
container_volume 18
creator Li, Weiting
Xiang, Liyao
Guo, Bin
Li, Zhetao
Wang, Xinbing
description Differential privacy has been deployed to machine learning platforms to preserve the privacy of data in use. A long neglected but important fact is that data privacy is a non-replenishable resource and should be carefully scheduled to maximize its utility gain. In this work, we propose a new privacy budgeting system - DPlanner, which estimates data blocks' importance to queries and assigns fractional privacy budget to those data blocks contributing most to a query. The scheduler is novelly designed to include two-fold randomness, which satisfies differential privacy with tight budgets, at the same time guarantees the expected utility in the worst-case query sequence when queries arrive in an online fashion. Experiments in a variety of machine learning settings have shown that our DPlanner outperforms the state-of-the-art schedulers by serving at least 25% more queries, or reducing the total privacy consumption by over 50%.
doi_str_mv 10.1109/TIFS.2022.3231786
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIFS_2022_3231786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9997560</ieee_id><sourcerecordid>2769398998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-5e86744dad8080bb572b1d1be3eac74893deab287bfe4f7030b312655a060af33</originalsourceid><addsrcrecordid>eNo9kE1rwkAURYfSQq3tDyjdBLqOffM9053V2gpCBXU9TJIXiWhiZ2Ih_76K4urdxbn3wSHkmcKAUrBvy-lkMWDA2IAzTrVRN6RHpVSpAkZvr5nye_IQ4wZACKpMj8B4vvV1jeE9GSbzUP35vEs-DsUa26peJ4sutrhLyiYkq7baVm33SO5Kv434dLl9spp8Lkff6eznazoaztKcCdmmEo3SQhS-MGAgy6RmGS1ohhx9roWxvECfMaOzEkWpgUPGKVNSelDgS8775PW8uw_N7wFj6zbNIdTHl45pZbk11pojRc9UHpoYA5ZuH6qdD52j4E5i3EmMO4lxFzHHzsu5UyHilbfWaqmA_wOypF06</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769398998</pqid></control><display><type>article</type><title>DPlanner: A Privacy Budgeting System for Utility</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Weiting ; Xiang, Liyao ; Guo, Bin ; Li, Zhetao ; Wang, Xinbing</creator><creatorcontrib>Li, Weiting ; Xiang, Liyao ; Guo, Bin ; Li, Zhetao ; Wang, Xinbing</creatorcontrib><description>Differential privacy has been deployed to machine learning platforms to preserve the privacy of data in use. A long neglected but important fact is that data privacy is a non-replenishable resource and should be carefully scheduled to maximize its utility gain. In this work, we propose a new privacy budgeting system - DPlanner, which estimates data blocks' importance to queries and assigns fractional privacy budget to those data blocks contributing most to a query. The scheduler is novelly designed to include two-fold randomness, which satisfies differential privacy with tight budgets, at the same time guarantees the expected utility in the worst-case query sequence when queries arrive in an online fashion. Experiments in a variety of machine learning settings have shown that our DPlanner outperforms the state-of-the-art schedulers by serving at least 25% more queries, or reducing the total privacy consumption by over 50%.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2022.3231786</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Budgeting ; Budgets ; Data models ; Data privacy ; Differential privacy ; Machine learning ; Privacy ; Queries ; Schedules ; Scheduling ; Training data</subject><ispartof>IEEE transactions on information forensics and security, 2023-01, Vol.18, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-5e86744dad8080bb572b1d1be3eac74893deab287bfe4f7030b312655a060af33</cites><orcidid>0000-0003-0165-4930 ; 0000-0003-3788-1668 ; 0000-0001-6097-2467 ; 0000-0002-0357-8356 ; 0000-0002-7804-0286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9997560$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Li, Weiting</creatorcontrib><creatorcontrib>Xiang, Liyao</creatorcontrib><creatorcontrib>Guo, Bin</creatorcontrib><creatorcontrib>Li, Zhetao</creatorcontrib><creatorcontrib>Wang, Xinbing</creatorcontrib><title>DPlanner: A Privacy Budgeting System for Utility</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Differential privacy has been deployed to machine learning platforms to preserve the privacy of data in use. A long neglected but important fact is that data privacy is a non-replenishable resource and should be carefully scheduled to maximize its utility gain. In this work, we propose a new privacy budgeting system - DPlanner, which estimates data blocks' importance to queries and assigns fractional privacy budget to those data blocks contributing most to a query. The scheduler is novelly designed to include two-fold randomness, which satisfies differential privacy with tight budgets, at the same time guarantees the expected utility in the worst-case query sequence when queries arrive in an online fashion. Experiments in a variety of machine learning settings have shown that our DPlanner outperforms the state-of-the-art schedulers by serving at least 25% more queries, or reducing the total privacy consumption by over 50%.</description><subject>Budgeting</subject><subject>Budgets</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Differential privacy</subject><subject>Machine learning</subject><subject>Privacy</subject><subject>Queries</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Training data</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1rwkAURYfSQq3tDyjdBLqOffM9053V2gpCBXU9TJIXiWhiZ2Ih_76K4urdxbn3wSHkmcKAUrBvy-lkMWDA2IAzTrVRN6RHpVSpAkZvr5nye_IQ4wZACKpMj8B4vvV1jeE9GSbzUP35vEs-DsUa26peJ4sutrhLyiYkq7baVm33SO5Kv434dLl9spp8Lkff6eznazoaztKcCdmmEo3SQhS-MGAgy6RmGS1ohhx9roWxvECfMaOzEkWpgUPGKVNSelDgS8775PW8uw_N7wFj6zbNIdTHl45pZbk11pojRc9UHpoYA5ZuH6qdD52j4E5i3EmMO4lxFzHHzsu5UyHilbfWaqmA_wOypF06</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Li, Weiting</creator><creator>Xiang, Liyao</creator><creator>Guo, Bin</creator><creator>Li, Zhetao</creator><creator>Wang, Xinbing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0165-4930</orcidid><orcidid>https://orcid.org/0000-0003-3788-1668</orcidid><orcidid>https://orcid.org/0000-0001-6097-2467</orcidid><orcidid>https://orcid.org/0000-0002-0357-8356</orcidid><orcidid>https://orcid.org/0000-0002-7804-0286</orcidid></search><sort><creationdate>20230101</creationdate><title>DPlanner: A Privacy Budgeting System for Utility</title><author>Li, Weiting ; Xiang, Liyao ; Guo, Bin ; Li, Zhetao ; Wang, Xinbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-5e86744dad8080bb572b1d1be3eac74893deab287bfe4f7030b312655a060af33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Budgeting</topic><topic>Budgets</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Differential privacy</topic><topic>Machine learning</topic><topic>Privacy</topic><topic>Queries</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Weiting</creatorcontrib><creatorcontrib>Xiang, Liyao</creatorcontrib><creatorcontrib>Guo, Bin</creatorcontrib><creatorcontrib>Li, Zhetao</creatorcontrib><creatorcontrib>Wang, Xinbing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Weiting</au><au>Xiang, Liyao</au><au>Guo, Bin</au><au>Li, Zhetao</au><au>Wang, Xinbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DPlanner: A Privacy Budgeting System for Utility</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>18</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Differential privacy has been deployed to machine learning platforms to preserve the privacy of data in use. A long neglected but important fact is that data privacy is a non-replenishable resource and should be carefully scheduled to maximize its utility gain. In this work, we propose a new privacy budgeting system - DPlanner, which estimates data blocks' importance to queries and assigns fractional privacy budget to those data blocks contributing most to a query. The scheduler is novelly designed to include two-fold randomness, which satisfies differential privacy with tight budgets, at the same time guarantees the expected utility in the worst-case query sequence when queries arrive in an online fashion. Experiments in a variety of machine learning settings have shown that our DPlanner outperforms the state-of-the-art schedulers by serving at least 25% more queries, or reducing the total privacy consumption by over 50%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2022.3231786</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0165-4930</orcidid><orcidid>https://orcid.org/0000-0003-3788-1668</orcidid><orcidid>https://orcid.org/0000-0001-6097-2467</orcidid><orcidid>https://orcid.org/0000-0002-0357-8356</orcidid><orcidid>https://orcid.org/0000-0002-7804-0286</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2023-01, Vol.18, p.1-1
issn 1556-6013
1556-6021
language eng
recordid cdi_crossref_primary_10_1109_TIFS_2022_3231786
source IEEE Electronic Library (IEL) Journals
subjects Budgeting
Budgets
Data models
Data privacy
Differential privacy
Machine learning
Privacy
Queries
Schedules
Scheduling
Training data
title DPlanner: A Privacy Budgeting System for Utility
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DPlanner:%20A%20Privacy%20Budgeting%20System%20for%20Utility&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Li,%20Weiting&rft.date=2023-01-01&rft.volume=18&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2022.3231786&rft_dat=%3Cproquest_cross%3E2769398998%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-5e86744dad8080bb572b1d1be3eac74893deab287bfe4f7030b312655a060af33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2769398998&rft_id=info:pmid/&rft_ieee_id=9997560&rfr_iscdi=true