Loading…
DPlanner: A Privacy Budgeting System for Utility
Differential privacy has been deployed to machine learning platforms to preserve the privacy of data in use. A long neglected but important fact is that data privacy is a non-replenishable resource and should be carefully scheduled to maximize its utility gain. In this work, we propose a new privacy...
Saved in:
Published in: | IEEE transactions on information forensics and security 2023-01, Vol.18, p.1-1 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-5e86744dad8080bb572b1d1be3eac74893deab287bfe4f7030b312655a060af33 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on information forensics and security |
container_volume | 18 |
creator | Li, Weiting Xiang, Liyao Guo, Bin Li, Zhetao Wang, Xinbing |
description | Differential privacy has been deployed to machine learning platforms to preserve the privacy of data in use. A long neglected but important fact is that data privacy is a non-replenishable resource and should be carefully scheduled to maximize its utility gain. In this work, we propose a new privacy budgeting system - DPlanner, which estimates data blocks' importance to queries and assigns fractional privacy budget to those data blocks contributing most to a query. The scheduler is novelly designed to include two-fold randomness, which satisfies differential privacy with tight budgets, at the same time guarantees the expected utility in the worst-case query sequence when queries arrive in an online fashion. Experiments in a variety of machine learning settings have shown that our DPlanner outperforms the state-of-the-art schedulers by serving at least 25% more queries, or reducing the total privacy consumption by over 50%. |
doi_str_mv | 10.1109/TIFS.2022.3231786 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIFS_2022_3231786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9997560</ieee_id><sourcerecordid>2769398998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-5e86744dad8080bb572b1d1be3eac74893deab287bfe4f7030b312655a060af33</originalsourceid><addsrcrecordid>eNo9kE1rwkAURYfSQq3tDyjdBLqOffM9053V2gpCBXU9TJIXiWhiZ2Ih_76K4urdxbn3wSHkmcKAUrBvy-lkMWDA2IAzTrVRN6RHpVSpAkZvr5nye_IQ4wZACKpMj8B4vvV1jeE9GSbzUP35vEs-DsUa26peJ4sutrhLyiYkq7baVm33SO5Kv434dLl9spp8Lkff6eznazoaztKcCdmmEo3SQhS-MGAgy6RmGS1ohhx9roWxvECfMaOzEkWpgUPGKVNSelDgS8775PW8uw_N7wFj6zbNIdTHl45pZbk11pojRc9UHpoYA5ZuH6qdD52j4E5i3EmMO4lxFzHHzsu5UyHilbfWaqmA_wOypF06</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2769398998</pqid></control><display><type>article</type><title>DPlanner: A Privacy Budgeting System for Utility</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Weiting ; Xiang, Liyao ; Guo, Bin ; Li, Zhetao ; Wang, Xinbing</creator><creatorcontrib>Li, Weiting ; Xiang, Liyao ; Guo, Bin ; Li, Zhetao ; Wang, Xinbing</creatorcontrib><description>Differential privacy has been deployed to machine learning platforms to preserve the privacy of data in use. A long neglected but important fact is that data privacy is a non-replenishable resource and should be carefully scheduled to maximize its utility gain. In this work, we propose a new privacy budgeting system - DPlanner, which estimates data blocks' importance to queries and assigns fractional privacy budget to those data blocks contributing most to a query. The scheduler is novelly designed to include two-fold randomness, which satisfies differential privacy with tight budgets, at the same time guarantees the expected utility in the worst-case query sequence when queries arrive in an online fashion. Experiments in a variety of machine learning settings have shown that our DPlanner outperforms the state-of-the-art schedulers by serving at least 25% more queries, or reducing the total privacy consumption by over 50%.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2022.3231786</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Budgeting ; Budgets ; Data models ; Data privacy ; Differential privacy ; Machine learning ; Privacy ; Queries ; Schedules ; Scheduling ; Training data</subject><ispartof>IEEE transactions on information forensics and security, 2023-01, Vol.18, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-5e86744dad8080bb572b1d1be3eac74893deab287bfe4f7030b312655a060af33</cites><orcidid>0000-0003-0165-4930 ; 0000-0003-3788-1668 ; 0000-0001-6097-2467 ; 0000-0002-0357-8356 ; 0000-0002-7804-0286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9997560$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Li, Weiting</creatorcontrib><creatorcontrib>Xiang, Liyao</creatorcontrib><creatorcontrib>Guo, Bin</creatorcontrib><creatorcontrib>Li, Zhetao</creatorcontrib><creatorcontrib>Wang, Xinbing</creatorcontrib><title>DPlanner: A Privacy Budgeting System for Utility</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Differential privacy has been deployed to machine learning platforms to preserve the privacy of data in use. A long neglected but important fact is that data privacy is a non-replenishable resource and should be carefully scheduled to maximize its utility gain. In this work, we propose a new privacy budgeting system - DPlanner, which estimates data blocks' importance to queries and assigns fractional privacy budget to those data blocks contributing most to a query. The scheduler is novelly designed to include two-fold randomness, which satisfies differential privacy with tight budgets, at the same time guarantees the expected utility in the worst-case query sequence when queries arrive in an online fashion. Experiments in a variety of machine learning settings have shown that our DPlanner outperforms the state-of-the-art schedulers by serving at least 25% more queries, or reducing the total privacy consumption by over 50%.</description><subject>Budgeting</subject><subject>Budgets</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Differential privacy</subject><subject>Machine learning</subject><subject>Privacy</subject><subject>Queries</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Training data</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1rwkAURYfSQq3tDyjdBLqOffM9053V2gpCBXU9TJIXiWhiZ2Ih_76K4urdxbn3wSHkmcKAUrBvy-lkMWDA2IAzTrVRN6RHpVSpAkZvr5nye_IQ4wZACKpMj8B4vvV1jeE9GSbzUP35vEs-DsUa26peJ4sutrhLyiYkq7baVm33SO5Kv434dLl9spp8Lkff6eznazoaztKcCdmmEo3SQhS-MGAgy6RmGS1ohhx9roWxvECfMaOzEkWpgUPGKVNSelDgS8775PW8uw_N7wFj6zbNIdTHl45pZbk11pojRc9UHpoYA5ZuH6qdD52j4E5i3EmMO4lxFzHHzsu5UyHilbfWaqmA_wOypF06</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Li, Weiting</creator><creator>Xiang, Liyao</creator><creator>Guo, Bin</creator><creator>Li, Zhetao</creator><creator>Wang, Xinbing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0165-4930</orcidid><orcidid>https://orcid.org/0000-0003-3788-1668</orcidid><orcidid>https://orcid.org/0000-0001-6097-2467</orcidid><orcidid>https://orcid.org/0000-0002-0357-8356</orcidid><orcidid>https://orcid.org/0000-0002-7804-0286</orcidid></search><sort><creationdate>20230101</creationdate><title>DPlanner: A Privacy Budgeting System for Utility</title><author>Li, Weiting ; Xiang, Liyao ; Guo, Bin ; Li, Zhetao ; Wang, Xinbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-5e86744dad8080bb572b1d1be3eac74893deab287bfe4f7030b312655a060af33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Budgeting</topic><topic>Budgets</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Differential privacy</topic><topic>Machine learning</topic><topic>Privacy</topic><topic>Queries</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Weiting</creatorcontrib><creatorcontrib>Xiang, Liyao</creatorcontrib><creatorcontrib>Guo, Bin</creatorcontrib><creatorcontrib>Li, Zhetao</creatorcontrib><creatorcontrib>Wang, Xinbing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Weiting</au><au>Xiang, Liyao</au><au>Guo, Bin</au><au>Li, Zhetao</au><au>Wang, Xinbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DPlanner: A Privacy Budgeting System for Utility</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>18</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Differential privacy has been deployed to machine learning platforms to preserve the privacy of data in use. A long neglected but important fact is that data privacy is a non-replenishable resource and should be carefully scheduled to maximize its utility gain. In this work, we propose a new privacy budgeting system - DPlanner, which estimates data blocks' importance to queries and assigns fractional privacy budget to those data blocks contributing most to a query. The scheduler is novelly designed to include two-fold randomness, which satisfies differential privacy with tight budgets, at the same time guarantees the expected utility in the worst-case query sequence when queries arrive in an online fashion. Experiments in a variety of machine learning settings have shown that our DPlanner outperforms the state-of-the-art schedulers by serving at least 25% more queries, or reducing the total privacy consumption by over 50%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2022.3231786</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0165-4930</orcidid><orcidid>https://orcid.org/0000-0003-3788-1668</orcidid><orcidid>https://orcid.org/0000-0001-6097-2467</orcidid><orcidid>https://orcid.org/0000-0002-0357-8356</orcidid><orcidid>https://orcid.org/0000-0002-7804-0286</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2023-01, Vol.18, p.1-1 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIFS_2022_3231786 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Budgeting Budgets Data models Data privacy Differential privacy Machine learning Privacy Queries Schedules Scheduling Training data |
title | DPlanner: A Privacy Budgeting System for Utility |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A33%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DPlanner:%20A%20Privacy%20Budgeting%20System%20for%20Utility&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Li,%20Weiting&rft.date=2023-01-01&rft.volume=18&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2022.3231786&rft_dat=%3Cproquest_cross%3E2769398998%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-5e86744dad8080bb572b1d1be3eac74893deab287bfe4f7030b312655a060af33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2769398998&rft_id=info:pmid/&rft_ieee_id=9997560&rfr_iscdi=true |