Loading…
Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares
In this paper, a decentralized fault diagnosis approach of complex processes is proposed based on multiblock kernel partial least squares (MBKPLS). To solve the problem posed by nonlinear characteristics, kernel partial least squares (KPLS) approaches have been proposed. In this paper, MBKPLS algori...
Saved in:
Published in: | IEEE transactions on industrial informatics 2010-02, Vol.6 (1), p.3-10 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-23055771e30b4e8db8320b302b58adf71479de9ca39ac88205daa59992bdb64c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-23055771e30b4e8db8320b302b58adf71479de9ca39ac88205daa59992bdb64c3 |
container_end_page | 10 |
container_issue | 1 |
container_start_page | 3 |
container_title | IEEE transactions on industrial informatics |
container_volume | 6 |
creator | Yingwei Zhang Hong Zhou Qin, S.J. Tianyou Chai |
description | In this paper, a decentralized fault diagnosis approach of complex processes is proposed based on multiblock kernel partial least squares (MBKPLS). To solve the problem posed by nonlinear characteristics, kernel partial least squares (KPLS) approaches have been proposed. In this paper, MBKPLS algorithm is first proposed and applied to monitor large-scale processes. The advantages of MBKPLS are: 1) MBKPLS can capture more useful information between and within blocks compared to partial least squares (PLS); 2) MBKPLS gives nonlinear interpretation compared to MBPLS; 3) Fault diagnosis becomes possible if number of sub-blocks is equal to the number of the variables compared to KPLS. The proposed methods are applied to process monitoring of a continuous annealing process. Application results indicate that the proposed decentralized monitoring scheme effectively captures the complex relations in the process and improves the diagnosis ability tremendously. |
doi_str_mv | 10.1109/TII.2009.2033181 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2009_2033181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5340619</ieee_id><sourcerecordid>2543272981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-23055771e30b4e8db8320b302b58adf71479de9ca39ac88205daa59992bdb64c3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhqMKpG6h90q9WFzgEjoT25v4iPhoV10E0u6erYkzuzKYBOzk0P76mi7qoQcuMyPNM59vUXxBOEcE8229WJxXACYbKbHBD8UMjcISQMNBjrXGUubcx-JTSg8AsgZpZkV3xY77MVLwv7kTNzSFUVx52vVD8kkMW7GkuONy5SiwuI-D45Q4iU3y_U7cZtq3YXCP4ifHnoO4pzh6CmLJlEaxepkocjouDrcUEn9-80fF5uZ6ffmjXN59X1xeLEunKhzLSoLWdY0soVXcdG2TF24lVK1uqNvWqGrTsXEkDbmmqUB3RNoYU7VdO1dOHhWn-77PcXiZOI32ySfHIVDPw5RsreQ8_6GBTJ69S-K8xkop1VQZPfkPfRim2Oc7rEHMw83ffrCHXBxSiry1z9E_UfxlEeyrPjbrY1_1sW_65JKv-xLPzP9wLRXM0cg_xk6KrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911992980</pqid></control><display><type>article</type><title>Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares</title><source>IEEE Xplore (Online service)</source><creator>Yingwei Zhang ; Hong Zhou ; Qin, S.J. ; Tianyou Chai</creator><creatorcontrib>Yingwei Zhang ; Hong Zhou ; Qin, S.J. ; Tianyou Chai</creatorcontrib><description>In this paper, a decentralized fault diagnosis approach of complex processes is proposed based on multiblock kernel partial least squares (MBKPLS). To solve the problem posed by nonlinear characteristics, kernel partial least squares (KPLS) approaches have been proposed. In this paper, MBKPLS algorithm is first proposed and applied to monitor large-scale processes. The advantages of MBKPLS are: 1) MBKPLS can capture more useful information between and within blocks compared to partial least squares (PLS); 2) MBKPLS gives nonlinear interpretation compared to MBPLS; 3) Fault diagnosis becomes possible if number of sub-blocks is equal to the number of the variables compared to KPLS. The proposed methods are applied to process monitoring of a continuous annealing process. Application results indicate that the proposed decentralized monitoring scheme effectively captures the complex relations in the process and improves the diagnosis ability tremendously.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2009.2033181</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Chemical industry ; Covariance matrix ; Decentralized ; Fault diagnosis ; Kernel ; Kernels ; Large-scale systems ; Least squares method ; Least squares methods ; Monitoring ; Monitors ; multiblock kernel partial least squares (MBKPLS) ; Neural networks ; nonlinear component analysis ; Nonlinearity ; Principal component analysis ; process monitoring</subject><ispartof>IEEE transactions on industrial informatics, 2010-02, Vol.6 (1), p.3-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-23055771e30b4e8db8320b302b58adf71479de9ca39ac88205daa59992bdb64c3</citedby><cites>FETCH-LOGICAL-c421t-23055771e30b4e8db8320b302b58adf71479de9ca39ac88205daa59992bdb64c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5340619$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yingwei Zhang</creatorcontrib><creatorcontrib>Hong Zhou</creatorcontrib><creatorcontrib>Qin, S.J.</creatorcontrib><creatorcontrib>Tianyou Chai</creatorcontrib><title>Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In this paper, a decentralized fault diagnosis approach of complex processes is proposed based on multiblock kernel partial least squares (MBKPLS). To solve the problem posed by nonlinear characteristics, kernel partial least squares (KPLS) approaches have been proposed. In this paper, MBKPLS algorithm is first proposed and applied to monitor large-scale processes. The advantages of MBKPLS are: 1) MBKPLS can capture more useful information between and within blocks compared to partial least squares (PLS); 2) MBKPLS gives nonlinear interpretation compared to MBPLS; 3) Fault diagnosis becomes possible if number of sub-blocks is equal to the number of the variables compared to KPLS. The proposed methods are applied to process monitoring of a continuous annealing process. Application results indicate that the proposed decentralized monitoring scheme effectively captures the complex relations in the process and improves the diagnosis ability tremendously.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Chemical industry</subject><subject>Covariance matrix</subject><subject>Decentralized</subject><subject>Fault diagnosis</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Large-scale systems</subject><subject>Least squares method</subject><subject>Least squares methods</subject><subject>Monitoring</subject><subject>Monitors</subject><subject>multiblock kernel partial least squares (MBKPLS)</subject><subject>Neural networks</subject><subject>nonlinear component analysis</subject><subject>Nonlinearity</subject><subject>Principal component analysis</subject><subject>process monitoring</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kU1P3DAQhqMKpG6h90q9WFzgEjoT25v4iPhoV10E0u6erYkzuzKYBOzk0P76mi7qoQcuMyPNM59vUXxBOEcE8229WJxXACYbKbHBD8UMjcISQMNBjrXGUubcx-JTSg8AsgZpZkV3xY77MVLwv7kTNzSFUVx52vVD8kkMW7GkuONy5SiwuI-D45Q4iU3y_U7cZtq3YXCP4ifHnoO4pzh6CmLJlEaxepkocjouDrcUEn9-80fF5uZ6ffmjXN59X1xeLEunKhzLSoLWdY0soVXcdG2TF24lVK1uqNvWqGrTsXEkDbmmqUB3RNoYU7VdO1dOHhWn-77PcXiZOI32ySfHIVDPw5RsreQ8_6GBTJ69S-K8xkop1VQZPfkPfRim2Oc7rEHMw83ffrCHXBxSiry1z9E_UfxlEeyrPjbrY1_1sW_65JKv-xLPzP9wLRXM0cg_xk6KrQ</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Yingwei Zhang</creator><creator>Hong Zhou</creator><creator>Qin, S.J.</creator><creator>Tianyou Chai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201002</creationdate><title>Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares</title><author>Yingwei Zhang ; Hong Zhou ; Qin, S.J. ; Tianyou Chai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-23055771e30b4e8db8320b302b58adf71479de9ca39ac88205daa59992bdb64c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Chemical industry</topic><topic>Covariance matrix</topic><topic>Decentralized</topic><topic>Fault diagnosis</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Large-scale systems</topic><topic>Least squares method</topic><topic>Least squares methods</topic><topic>Monitoring</topic><topic>Monitors</topic><topic>multiblock kernel partial least squares (MBKPLS)</topic><topic>Neural networks</topic><topic>nonlinear component analysis</topic><topic>Nonlinearity</topic><topic>Principal component analysis</topic><topic>process monitoring</topic><toplevel>online_resources</toplevel><creatorcontrib>Yingwei Zhang</creatorcontrib><creatorcontrib>Hong Zhou</creatorcontrib><creatorcontrib>Qin, S.J.</creatorcontrib><creatorcontrib>Tianyou Chai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yingwei Zhang</au><au>Hong Zhou</au><au>Qin, S.J.</au><au>Tianyou Chai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2010-02</date><risdate>2010</risdate><volume>6</volume><issue>1</issue><spage>3</spage><epage>10</epage><pages>3-10</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In this paper, a decentralized fault diagnosis approach of complex processes is proposed based on multiblock kernel partial least squares (MBKPLS). To solve the problem posed by nonlinear characteristics, kernel partial least squares (KPLS) approaches have been proposed. In this paper, MBKPLS algorithm is first proposed and applied to monitor large-scale processes. The advantages of MBKPLS are: 1) MBKPLS can capture more useful information between and within blocks compared to partial least squares (PLS); 2) MBKPLS gives nonlinear interpretation compared to MBPLS; 3) Fault diagnosis becomes possible if number of sub-blocks is equal to the number of the variables compared to KPLS. The proposed methods are applied to process monitoring of a continuous annealing process. Application results indicate that the proposed decentralized monitoring scheme effectively captures the complex relations in the process and improves the diagnosis ability tremendously.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2009.2033181</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2010-02, Vol.6 (1), p.3-10 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2009_2033181 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Artificial neural networks Chemical industry Covariance matrix Decentralized Fault diagnosis Kernel Kernels Large-scale systems Least squares method Least squares methods Monitoring Monitors multiblock kernel partial least squares (MBKPLS) Neural networks nonlinear component analysis Nonlinearity Principal component analysis process monitoring |
title | Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20Fault%20Diagnosis%20of%20Large-Scale%20Processes%20Using%20Multiblock%20Kernel%20Partial%20Least%20Squares&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Yingwei%20Zhang&rft.date=2010-02&rft.volume=6&rft.issue=1&rft.spage=3&rft.epage=10&rft.pages=3-10&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2009.2033181&rft_dat=%3Cproquest_cross%3E2543272981%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-23055771e30b4e8db8320b302b58adf71479de9ca39ac88205daa59992bdb64c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=911992980&rft_id=info:pmid/&rft_ieee_id=5340619&rfr_iscdi=true |