Loading…

Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares

In this paper, a decentralized fault diagnosis approach of complex processes is proposed based on multiblock kernel partial least squares (MBKPLS). To solve the problem posed by nonlinear characteristics, kernel partial least squares (KPLS) approaches have been proposed. In this paper, MBKPLS algori...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2010-02, Vol.6 (1), p.3-10
Main Authors: Yingwei Zhang, Hong Zhou, Qin, S.J., Tianyou Chai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-23055771e30b4e8db8320b302b58adf71479de9ca39ac88205daa59992bdb64c3
cites cdi_FETCH-LOGICAL-c421t-23055771e30b4e8db8320b302b58adf71479de9ca39ac88205daa59992bdb64c3
container_end_page 10
container_issue 1
container_start_page 3
container_title IEEE transactions on industrial informatics
container_volume 6
creator Yingwei Zhang
Hong Zhou
Qin, S.J.
Tianyou Chai
description In this paper, a decentralized fault diagnosis approach of complex processes is proposed based on multiblock kernel partial least squares (MBKPLS). To solve the problem posed by nonlinear characteristics, kernel partial least squares (KPLS) approaches have been proposed. In this paper, MBKPLS algorithm is first proposed and applied to monitor large-scale processes. The advantages of MBKPLS are: 1) MBKPLS can capture more useful information between and within blocks compared to partial least squares (PLS); 2) MBKPLS gives nonlinear interpretation compared to MBPLS; 3) Fault diagnosis becomes possible if number of sub-blocks is equal to the number of the variables compared to KPLS. The proposed methods are applied to process monitoring of a continuous annealing process. Application results indicate that the proposed decentralized monitoring scheme effectively captures the complex relations in the process and improves the diagnosis ability tremendously.
doi_str_mv 10.1109/TII.2009.2033181
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2009_2033181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5340619</ieee_id><sourcerecordid>2543272981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-23055771e30b4e8db8320b302b58adf71479de9ca39ac88205daa59992bdb64c3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhqMKpG6h90q9WFzgEjoT25v4iPhoV10E0u6erYkzuzKYBOzk0P76mi7qoQcuMyPNM59vUXxBOEcE8229WJxXACYbKbHBD8UMjcISQMNBjrXGUubcx-JTSg8AsgZpZkV3xY77MVLwv7kTNzSFUVx52vVD8kkMW7GkuONy5SiwuI-D45Q4iU3y_U7cZtq3YXCP4ifHnoO4pzh6CmLJlEaxepkocjouDrcUEn9-80fF5uZ6ffmjXN59X1xeLEunKhzLSoLWdY0soVXcdG2TF24lVK1uqNvWqGrTsXEkDbmmqUB3RNoYU7VdO1dOHhWn-77PcXiZOI32ySfHIVDPw5RsreQ8_6GBTJ69S-K8xkop1VQZPfkPfRim2Oc7rEHMw83ffrCHXBxSiry1z9E_UfxlEeyrPjbrY1_1sW_65JKv-xLPzP9wLRXM0cg_xk6KrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911992980</pqid></control><display><type>article</type><title>Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares</title><source>IEEE Xplore (Online service)</source><creator>Yingwei Zhang ; Hong Zhou ; Qin, S.J. ; Tianyou Chai</creator><creatorcontrib>Yingwei Zhang ; Hong Zhou ; Qin, S.J. ; Tianyou Chai</creatorcontrib><description>In this paper, a decentralized fault diagnosis approach of complex processes is proposed based on multiblock kernel partial least squares (MBKPLS). To solve the problem posed by nonlinear characteristics, kernel partial least squares (KPLS) approaches have been proposed. In this paper, MBKPLS algorithm is first proposed and applied to monitor large-scale processes. The advantages of MBKPLS are: 1) MBKPLS can capture more useful information between and within blocks compared to partial least squares (PLS); 2) MBKPLS gives nonlinear interpretation compared to MBPLS; 3) Fault diagnosis becomes possible if number of sub-blocks is equal to the number of the variables compared to KPLS. The proposed methods are applied to process monitoring of a continuous annealing process. Application results indicate that the proposed decentralized monitoring scheme effectively captures the complex relations in the process and improves the diagnosis ability tremendously.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2009.2033181</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Chemical industry ; Covariance matrix ; Decentralized ; Fault diagnosis ; Kernel ; Kernels ; Large-scale systems ; Least squares method ; Least squares methods ; Monitoring ; Monitors ; multiblock kernel partial least squares (MBKPLS) ; Neural networks ; nonlinear component analysis ; Nonlinearity ; Principal component analysis ; process monitoring</subject><ispartof>IEEE transactions on industrial informatics, 2010-02, Vol.6 (1), p.3-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2010</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-23055771e30b4e8db8320b302b58adf71479de9ca39ac88205daa59992bdb64c3</citedby><cites>FETCH-LOGICAL-c421t-23055771e30b4e8db8320b302b58adf71479de9ca39ac88205daa59992bdb64c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5340619$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yingwei Zhang</creatorcontrib><creatorcontrib>Hong Zhou</creatorcontrib><creatorcontrib>Qin, S.J.</creatorcontrib><creatorcontrib>Tianyou Chai</creatorcontrib><title>Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>In this paper, a decentralized fault diagnosis approach of complex processes is proposed based on multiblock kernel partial least squares (MBKPLS). To solve the problem posed by nonlinear characteristics, kernel partial least squares (KPLS) approaches have been proposed. In this paper, MBKPLS algorithm is first proposed and applied to monitor large-scale processes. The advantages of MBKPLS are: 1) MBKPLS can capture more useful information between and within blocks compared to partial least squares (PLS); 2) MBKPLS gives nonlinear interpretation compared to MBPLS; 3) Fault diagnosis becomes possible if number of sub-blocks is equal to the number of the variables compared to KPLS. The proposed methods are applied to process monitoring of a continuous annealing process. Application results indicate that the proposed decentralized monitoring scheme effectively captures the complex relations in the process and improves the diagnosis ability tremendously.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Chemical industry</subject><subject>Covariance matrix</subject><subject>Decentralized</subject><subject>Fault diagnosis</subject><subject>Kernel</subject><subject>Kernels</subject><subject>Large-scale systems</subject><subject>Least squares method</subject><subject>Least squares methods</subject><subject>Monitoring</subject><subject>Monitors</subject><subject>multiblock kernel partial least squares (MBKPLS)</subject><subject>Neural networks</subject><subject>nonlinear component analysis</subject><subject>Nonlinearity</subject><subject>Principal component analysis</subject><subject>process monitoring</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kU1P3DAQhqMKpG6h90q9WFzgEjoT25v4iPhoV10E0u6erYkzuzKYBOzk0P76mi7qoQcuMyPNM59vUXxBOEcE8229WJxXACYbKbHBD8UMjcISQMNBjrXGUubcx-JTSg8AsgZpZkV3xY77MVLwv7kTNzSFUVx52vVD8kkMW7GkuONy5SiwuI-D45Q4iU3y_U7cZtq3YXCP4ifHnoO4pzh6CmLJlEaxepkocjouDrcUEn9-80fF5uZ6ffmjXN59X1xeLEunKhzLSoLWdY0soVXcdG2TF24lVK1uqNvWqGrTsXEkDbmmqUB3RNoYU7VdO1dOHhWn-77PcXiZOI32ySfHIVDPw5RsreQ8_6GBTJ69S-K8xkop1VQZPfkPfRim2Oc7rEHMw83ffrCHXBxSiry1z9E_UfxlEeyrPjbrY1_1sW_65JKv-xLPzP9wLRXM0cg_xk6KrQ</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Yingwei Zhang</creator><creator>Hong Zhou</creator><creator>Qin, S.J.</creator><creator>Tianyou Chai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201002</creationdate><title>Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares</title><author>Yingwei Zhang ; Hong Zhou ; Qin, S.J. ; Tianyou Chai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-23055771e30b4e8db8320b302b58adf71479de9ca39ac88205daa59992bdb64c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Chemical industry</topic><topic>Covariance matrix</topic><topic>Decentralized</topic><topic>Fault diagnosis</topic><topic>Kernel</topic><topic>Kernels</topic><topic>Large-scale systems</topic><topic>Least squares method</topic><topic>Least squares methods</topic><topic>Monitoring</topic><topic>Monitors</topic><topic>multiblock kernel partial least squares (MBKPLS)</topic><topic>Neural networks</topic><topic>nonlinear component analysis</topic><topic>Nonlinearity</topic><topic>Principal component analysis</topic><topic>process monitoring</topic><toplevel>online_resources</toplevel><creatorcontrib>Yingwei Zhang</creatorcontrib><creatorcontrib>Hong Zhou</creatorcontrib><creatorcontrib>Qin, S.J.</creatorcontrib><creatorcontrib>Tianyou Chai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yingwei Zhang</au><au>Hong Zhou</au><au>Qin, S.J.</au><au>Tianyou Chai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2010-02</date><risdate>2010</risdate><volume>6</volume><issue>1</issue><spage>3</spage><epage>10</epage><pages>3-10</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>In this paper, a decentralized fault diagnosis approach of complex processes is proposed based on multiblock kernel partial least squares (MBKPLS). To solve the problem posed by nonlinear characteristics, kernel partial least squares (KPLS) approaches have been proposed. In this paper, MBKPLS algorithm is first proposed and applied to monitor large-scale processes. The advantages of MBKPLS are: 1) MBKPLS can capture more useful information between and within blocks compared to partial least squares (PLS); 2) MBKPLS gives nonlinear interpretation compared to MBPLS; 3) Fault diagnosis becomes possible if number of sub-blocks is equal to the number of the variables compared to KPLS. The proposed methods are applied to process monitoring of a continuous annealing process. Application results indicate that the proposed decentralized monitoring scheme effectively captures the complex relations in the process and improves the diagnosis ability tremendously.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2009.2033181</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2010-02, Vol.6 (1), p.3-10
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2009_2033181
source IEEE Xplore (Online service)
subjects Algorithms
Artificial neural networks
Chemical industry
Covariance matrix
Decentralized
Fault diagnosis
Kernel
Kernels
Large-scale systems
Least squares method
Least squares methods
Monitoring
Monitors
multiblock kernel partial least squares (MBKPLS)
Neural networks
nonlinear component analysis
Nonlinearity
Principal component analysis
process monitoring
title Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20Fault%20Diagnosis%20of%20Large-Scale%20Processes%20Using%20Multiblock%20Kernel%20Partial%20Least%20Squares&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Yingwei%20Zhang&rft.date=2010-02&rft.volume=6&rft.issue=1&rft.spage=3&rft.epage=10&rft.pages=3-10&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2009.2033181&rft_dat=%3Cproquest_cross%3E2543272981%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-23055771e30b4e8db8320b302b58adf71479de9ca39ac88205daa59992bdb64c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=911992980&rft_id=info:pmid/&rft_ieee_id=5340619&rfr_iscdi=true