Loading…
Deep Endoscope: Intelligent Duct Inspection for the Avionic Industry
We present the first autonomous endoscope for the visual inspection of very small ducts and cavities, up to a 6-mm diameter. The system has been designed, implemented, and tested in a challenging industrial scenario and in strict collaboration with an avionic industry partner. The inspected objects...
Saved in:
Published in: | IEEE transactions on industrial informatics 2018-04, Vol.14 (4), p.1701-1711 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-a82f69b8c704a967cf4f6b5c62347d6d9f8f2de3c08806942d29ed8aa86d12df3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-a82f69b8c704a967cf4f6b5c62347d6d9f8f2de3c08806942d29ed8aa86d12df3 |
container_end_page | 1711 |
container_issue | 4 |
container_start_page | 1701 |
container_title | IEEE transactions on industrial informatics |
container_volume | 14 |
creator | Martelli, Samuele Mazzei, Luca Canali, Carlo Guardiani, Paolo Giunta, Salvatore Ghiazza, Alberto Mondino, Ivan Cannella, Ferdinando Murino, Vittorio Bue, Alessio Del |
description | We present the first autonomous endoscope for the visual inspection of very small ducts and cavities, up to a 6-mm diameter. The system has been designed, implemented, and tested in a challenging industrial scenario and in strict collaboration with an avionic industry partner. The inspected objects are metallic gearboxes eventually presenting different residuals (e.g., sand, machining swarfs, and metallic dust) inside the oil ducts. The automatic system is actuated by a robotic arm that moves the endoscope with a microcamera inside the gearbox duct, while a deep-learning-based spatio-temporal image analysis module detects, classifies, and localizes defects in real time. Feedback is given to the robotic arm in order to move or extract the endoscope given the detected anomalies. Evaluation provides a detection rate of nearly 98 % given different tests with different types of residuals and duct structures. |
doi_str_mv | 10.1109/TII.2018.2807797 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2018_2807797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8295126</ieee_id><sourcerecordid>2022069103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a82f69b8c704a967cf4f6b5c62347d6d9f8f2de3c08806942d29ed8aa86d12df3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKd3wUvBc-dL0qaJt7FNLQy8zHPokhftmG1NUmH_vRkbnt6v7_f74EPIPYUZpaCeNnU9Y0DljEmoKlVdkAlVBc0BSrhMfVnSnDPg1-QmhB0Ar4CrCVkuEYds1dk-mH7A56zuIu737Sd2MVuOJqZFGNDEtu8y1_ssfmE2_01Ta9LJjiH6wy25cs0-4N25TsnHy2qzeMvX76_1Yr7ODVM05o1kTqitNBUUjRKVcYUT29IIxovKCqucdMwiNyAlCFUwyxRa2TRSWMqs41PyeModfP8zYoh614--Sy81A8aShwJPKjipjO9D8Oj04Nvvxh80BX1kpRMrfWSlz6yS5eFkaRHxXy6ZKikT_A9i7GRr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022069103</pqid></control><display><type>article</type><title>Deep Endoscope: Intelligent Duct Inspection for the Avionic Industry</title><source>IEEE Xplore (Online service)</source><creator>Martelli, Samuele ; Mazzei, Luca ; Canali, Carlo ; Guardiani, Paolo ; Giunta, Salvatore ; Ghiazza, Alberto ; Mondino, Ivan ; Cannella, Ferdinando ; Murino, Vittorio ; Bue, Alessio Del</creator><creatorcontrib>Martelli, Samuele ; Mazzei, Luca ; Canali, Carlo ; Guardiani, Paolo ; Giunta, Salvatore ; Ghiazza, Alberto ; Mondino, Ivan ; Cannella, Ferdinando ; Murino, Vittorio ; Bue, Alessio Del</creatorcontrib><description>We present the first autonomous endoscope for the visual inspection of very small ducts and cavities, up to a 6-mm diameter. The system has been designed, implemented, and tested in a challenging industrial scenario and in strict collaboration with an avionic industry partner. The inspected objects are metallic gearboxes eventually presenting different residuals (e.g., sand, machining swarfs, and metallic dust) inside the oil ducts. The automatic system is actuated by a robotic arm that moves the endoscope with a microcamera inside the gearbox duct, while a deep-learning-based spatio-temporal image analysis module detects, classifies, and localizes defects in real time. Feedback is given to the robotic arm in order to move or extract the endoscope given the detected anomalies. Evaluation provides a detection rate of nearly <inline-formula><tex-math notation="LaTeX">98</tex-math> </inline-formula>% given different tests with different types of residuals and duct structures.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2807797</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Avionics ; Deep learning ; Ducts ; Endoscopes ; Image analysis ; Image detection ; Inspection ; Machining ; Probes ; Robot arms ; robotic endoscope ; Robots ; Task analysis ; Transmissions (machine elements) ; visual inspection ; Visualization</subject><ispartof>IEEE transactions on industrial informatics, 2018-04, Vol.14 (4), p.1701-1711</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a82f69b8c704a967cf4f6b5c62347d6d9f8f2de3c08806942d29ed8aa86d12df3</citedby><cites>FETCH-LOGICAL-c291t-a82f69b8c704a967cf4f6b5c62347d6d9f8f2de3c08806942d29ed8aa86d12df3</cites><orcidid>0000-0002-2193-2419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8295126$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Martelli, Samuele</creatorcontrib><creatorcontrib>Mazzei, Luca</creatorcontrib><creatorcontrib>Canali, Carlo</creatorcontrib><creatorcontrib>Guardiani, Paolo</creatorcontrib><creatorcontrib>Giunta, Salvatore</creatorcontrib><creatorcontrib>Ghiazza, Alberto</creatorcontrib><creatorcontrib>Mondino, Ivan</creatorcontrib><creatorcontrib>Cannella, Ferdinando</creatorcontrib><creatorcontrib>Murino, Vittorio</creatorcontrib><creatorcontrib>Bue, Alessio Del</creatorcontrib><title>Deep Endoscope: Intelligent Duct Inspection for the Avionic Industry</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>We present the first autonomous endoscope for the visual inspection of very small ducts and cavities, up to a 6-mm diameter. The system has been designed, implemented, and tested in a challenging industrial scenario and in strict collaboration with an avionic industry partner. The inspected objects are metallic gearboxes eventually presenting different residuals (e.g., sand, machining swarfs, and metallic dust) inside the oil ducts. The automatic system is actuated by a robotic arm that moves the endoscope with a microcamera inside the gearbox duct, while a deep-learning-based spatio-temporal image analysis module detects, classifies, and localizes defects in real time. Feedback is given to the robotic arm in order to move or extract the endoscope given the detected anomalies. Evaluation provides a detection rate of nearly <inline-formula><tex-math notation="LaTeX">98</tex-math> </inline-formula>% given different tests with different types of residuals and duct structures.</description><subject>Avionics</subject><subject>Deep learning</subject><subject>Ducts</subject><subject>Endoscopes</subject><subject>Image analysis</subject><subject>Image detection</subject><subject>Inspection</subject><subject>Machining</subject><subject>Probes</subject><subject>Robot arms</subject><subject>robotic endoscope</subject><subject>Robots</subject><subject>Task analysis</subject><subject>Transmissions (machine elements)</subject><subject>visual inspection</subject><subject>Visualization</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAUx4MoOKd3wUvBc-dL0qaJt7FNLQy8zHPokhftmG1NUmH_vRkbnt6v7_f74EPIPYUZpaCeNnU9Y0DljEmoKlVdkAlVBc0BSrhMfVnSnDPg1-QmhB0Ar4CrCVkuEYds1dk-mH7A56zuIu737Sd2MVuOJqZFGNDEtu8y1_ssfmE2_01Ta9LJjiH6wy25cs0-4N25TsnHy2qzeMvX76_1Yr7ODVM05o1kTqitNBUUjRKVcYUT29IIxovKCqucdMwiNyAlCFUwyxRa2TRSWMqs41PyeModfP8zYoh614--Sy81A8aShwJPKjipjO9D8Oj04Nvvxh80BX1kpRMrfWSlz6yS5eFkaRHxXy6ZKikT_A9i7GRr</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Martelli, Samuele</creator><creator>Mazzei, Luca</creator><creator>Canali, Carlo</creator><creator>Guardiani, Paolo</creator><creator>Giunta, Salvatore</creator><creator>Ghiazza, Alberto</creator><creator>Mondino, Ivan</creator><creator>Cannella, Ferdinando</creator><creator>Murino, Vittorio</creator><creator>Bue, Alessio Del</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2193-2419</orcidid></search><sort><creationdate>20180401</creationdate><title>Deep Endoscope: Intelligent Duct Inspection for the Avionic Industry</title><author>Martelli, Samuele ; Mazzei, Luca ; Canali, Carlo ; Guardiani, Paolo ; Giunta, Salvatore ; Ghiazza, Alberto ; Mondino, Ivan ; Cannella, Ferdinando ; Murino, Vittorio ; Bue, Alessio Del</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a82f69b8c704a967cf4f6b5c62347d6d9f8f2de3c08806942d29ed8aa86d12df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Avionics</topic><topic>Deep learning</topic><topic>Ducts</topic><topic>Endoscopes</topic><topic>Image analysis</topic><topic>Image detection</topic><topic>Inspection</topic><topic>Machining</topic><topic>Probes</topic><topic>Robot arms</topic><topic>robotic endoscope</topic><topic>Robots</topic><topic>Task analysis</topic><topic>Transmissions (machine elements)</topic><topic>visual inspection</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Martelli, Samuele</creatorcontrib><creatorcontrib>Mazzei, Luca</creatorcontrib><creatorcontrib>Canali, Carlo</creatorcontrib><creatorcontrib>Guardiani, Paolo</creatorcontrib><creatorcontrib>Giunta, Salvatore</creatorcontrib><creatorcontrib>Ghiazza, Alberto</creatorcontrib><creatorcontrib>Mondino, Ivan</creatorcontrib><creatorcontrib>Cannella, Ferdinando</creatorcontrib><creatorcontrib>Murino, Vittorio</creatorcontrib><creatorcontrib>Bue, Alessio Del</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martelli, Samuele</au><au>Mazzei, Luca</au><au>Canali, Carlo</au><au>Guardiani, Paolo</au><au>Giunta, Salvatore</au><au>Ghiazza, Alberto</au><au>Mondino, Ivan</au><au>Cannella, Ferdinando</au><au>Murino, Vittorio</au><au>Bue, Alessio Del</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Endoscope: Intelligent Duct Inspection for the Avionic Industry</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>14</volume><issue>4</issue><spage>1701</spage><epage>1711</epage><pages>1701-1711</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>We present the first autonomous endoscope for the visual inspection of very small ducts and cavities, up to a 6-mm diameter. The system has been designed, implemented, and tested in a challenging industrial scenario and in strict collaboration with an avionic industry partner. The inspected objects are metallic gearboxes eventually presenting different residuals (e.g., sand, machining swarfs, and metallic dust) inside the oil ducts. The automatic system is actuated by a robotic arm that moves the endoscope with a microcamera inside the gearbox duct, while a deep-learning-based spatio-temporal image analysis module detects, classifies, and localizes defects in real time. Feedback is given to the robotic arm in order to move or extract the endoscope given the detected anomalies. Evaluation provides a detection rate of nearly <inline-formula><tex-math notation="LaTeX">98</tex-math> </inline-formula>% given different tests with different types of residuals and duct structures.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2807797</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2193-2419</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2018-04, Vol.14 (4), p.1701-1711 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2018_2807797 |
source | IEEE Xplore (Online service) |
subjects | Avionics Deep learning Ducts Endoscopes Image analysis Image detection Inspection Machining Probes Robot arms robotic endoscope Robots Task analysis Transmissions (machine elements) visual inspection Visualization |
title | Deep Endoscope: Intelligent Duct Inspection for the Avionic Industry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Endoscope:%20Intelligent%20Duct%20Inspection%20for%20the%20Avionic%20Industry&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Martelli,%20Samuele&rft.date=2018-04-01&rft.volume=14&rft.issue=4&rft.spage=1701&rft.epage=1711&rft.pages=1701-1711&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2807797&rft_dat=%3Cproquest_cross%3E2022069103%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-a82f69b8c704a967cf4f6b5c62347d6d9f8f2de3c08806942d29ed8aa86d12df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2022069103&rft_id=info:pmid/&rft_ieee_id=8295126&rfr_iscdi=true |