Loading…

Deep Endoscope: Intelligent Duct Inspection for the Avionic Industry

We present the first autonomous endoscope for the visual inspection of very small ducts and cavities, up to a 6-mm diameter. The system has been designed, implemented, and tested in a challenging industrial scenario and in strict collaboration with an avionic industry partner. The inspected objects...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2018-04, Vol.14 (4), p.1701-1711
Main Authors: Martelli, Samuele, Mazzei, Luca, Canali, Carlo, Guardiani, Paolo, Giunta, Salvatore, Ghiazza, Alberto, Mondino, Ivan, Cannella, Ferdinando, Murino, Vittorio, Bue, Alessio Del
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-a82f69b8c704a967cf4f6b5c62347d6d9f8f2de3c08806942d29ed8aa86d12df3
cites cdi_FETCH-LOGICAL-c291t-a82f69b8c704a967cf4f6b5c62347d6d9f8f2de3c08806942d29ed8aa86d12df3
container_end_page 1711
container_issue 4
container_start_page 1701
container_title IEEE transactions on industrial informatics
container_volume 14
creator Martelli, Samuele
Mazzei, Luca
Canali, Carlo
Guardiani, Paolo
Giunta, Salvatore
Ghiazza, Alberto
Mondino, Ivan
Cannella, Ferdinando
Murino, Vittorio
Bue, Alessio Del
description We present the first autonomous endoscope for the visual inspection of very small ducts and cavities, up to a 6-mm diameter. The system has been designed, implemented, and tested in a challenging industrial scenario and in strict collaboration with an avionic industry partner. The inspected objects are metallic gearboxes eventually presenting different residuals (e.g., sand, machining swarfs, and metallic dust) inside the oil ducts. The automatic system is actuated by a robotic arm that moves the endoscope with a microcamera inside the gearbox duct, while a deep-learning-based spatio-temporal image analysis module detects, classifies, and localizes defects in real time. Feedback is given to the robotic arm in order to move or extract the endoscope given the detected anomalies. Evaluation provides a detection rate of nearly 98 % given different tests with different types of residuals and duct structures.
doi_str_mv 10.1109/TII.2018.2807797
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2018_2807797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8295126</ieee_id><sourcerecordid>2022069103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a82f69b8c704a967cf4f6b5c62347d6d9f8f2de3c08806942d29ed8aa86d12df3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOKd3wUvBc-dL0qaJt7FNLQy8zHPokhftmG1NUmH_vRkbnt6v7_f74EPIPYUZpaCeNnU9Y0DljEmoKlVdkAlVBc0BSrhMfVnSnDPg1-QmhB0Ar4CrCVkuEYds1dk-mH7A56zuIu737Sd2MVuOJqZFGNDEtu8y1_ssfmE2_01Ta9LJjiH6wy25cs0-4N25TsnHy2qzeMvX76_1Yr7ODVM05o1kTqitNBUUjRKVcYUT29IIxovKCqucdMwiNyAlCFUwyxRa2TRSWMqs41PyeModfP8zYoh614--Sy81A8aShwJPKjipjO9D8Oj04Nvvxh80BX1kpRMrfWSlz6yS5eFkaRHxXy6ZKikT_A9i7GRr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022069103</pqid></control><display><type>article</type><title>Deep Endoscope: Intelligent Duct Inspection for the Avionic Industry</title><source>IEEE Xplore (Online service)</source><creator>Martelli, Samuele ; Mazzei, Luca ; Canali, Carlo ; Guardiani, Paolo ; Giunta, Salvatore ; Ghiazza, Alberto ; Mondino, Ivan ; Cannella, Ferdinando ; Murino, Vittorio ; Bue, Alessio Del</creator><creatorcontrib>Martelli, Samuele ; Mazzei, Luca ; Canali, Carlo ; Guardiani, Paolo ; Giunta, Salvatore ; Ghiazza, Alberto ; Mondino, Ivan ; Cannella, Ferdinando ; Murino, Vittorio ; Bue, Alessio Del</creatorcontrib><description>We present the first autonomous endoscope for the visual inspection of very small ducts and cavities, up to a 6-mm diameter. The system has been designed, implemented, and tested in a challenging industrial scenario and in strict collaboration with an avionic industry partner. The inspected objects are metallic gearboxes eventually presenting different residuals (e.g., sand, machining swarfs, and metallic dust) inside the oil ducts. The automatic system is actuated by a robotic arm that moves the endoscope with a microcamera inside the gearbox duct, while a deep-learning-based spatio-temporal image analysis module detects, classifies, and localizes defects in real time. Feedback is given to the robotic arm in order to move or extract the endoscope given the detected anomalies. Evaluation provides a detection rate of nearly &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;98&lt;/tex-math&gt; &lt;/inline-formula&gt;% given different tests with different types of residuals and duct structures.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2807797</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Avionics ; Deep learning ; Ducts ; Endoscopes ; Image analysis ; Image detection ; Inspection ; Machining ; Probes ; Robot arms ; robotic endoscope ; Robots ; Task analysis ; Transmissions (machine elements) ; visual inspection ; Visualization</subject><ispartof>IEEE transactions on industrial informatics, 2018-04, Vol.14 (4), p.1701-1711</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a82f69b8c704a967cf4f6b5c62347d6d9f8f2de3c08806942d29ed8aa86d12df3</citedby><cites>FETCH-LOGICAL-c291t-a82f69b8c704a967cf4f6b5c62347d6d9f8f2de3c08806942d29ed8aa86d12df3</cites><orcidid>0000-0002-2193-2419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8295126$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Martelli, Samuele</creatorcontrib><creatorcontrib>Mazzei, Luca</creatorcontrib><creatorcontrib>Canali, Carlo</creatorcontrib><creatorcontrib>Guardiani, Paolo</creatorcontrib><creatorcontrib>Giunta, Salvatore</creatorcontrib><creatorcontrib>Ghiazza, Alberto</creatorcontrib><creatorcontrib>Mondino, Ivan</creatorcontrib><creatorcontrib>Cannella, Ferdinando</creatorcontrib><creatorcontrib>Murino, Vittorio</creatorcontrib><creatorcontrib>Bue, Alessio Del</creatorcontrib><title>Deep Endoscope: Intelligent Duct Inspection for the Avionic Industry</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>We present the first autonomous endoscope for the visual inspection of very small ducts and cavities, up to a 6-mm diameter. The system has been designed, implemented, and tested in a challenging industrial scenario and in strict collaboration with an avionic industry partner. The inspected objects are metallic gearboxes eventually presenting different residuals (e.g., sand, machining swarfs, and metallic dust) inside the oil ducts. The automatic system is actuated by a robotic arm that moves the endoscope with a microcamera inside the gearbox duct, while a deep-learning-based spatio-temporal image analysis module detects, classifies, and localizes defects in real time. Feedback is given to the robotic arm in order to move or extract the endoscope given the detected anomalies. Evaluation provides a detection rate of nearly &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;98&lt;/tex-math&gt; &lt;/inline-formula&gt;% given different tests with different types of residuals and duct structures.</description><subject>Avionics</subject><subject>Deep learning</subject><subject>Ducts</subject><subject>Endoscopes</subject><subject>Image analysis</subject><subject>Image detection</subject><subject>Inspection</subject><subject>Machining</subject><subject>Probes</subject><subject>Robot arms</subject><subject>robotic endoscope</subject><subject>Robots</subject><subject>Task analysis</subject><subject>Transmissions (machine elements)</subject><subject>visual inspection</subject><subject>Visualization</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAUx4MoOKd3wUvBc-dL0qaJt7FNLQy8zHPokhftmG1NUmH_vRkbnt6v7_f74EPIPYUZpaCeNnU9Y0DljEmoKlVdkAlVBc0BSrhMfVnSnDPg1-QmhB0Ar4CrCVkuEYds1dk-mH7A56zuIu737Sd2MVuOJqZFGNDEtu8y1_ssfmE2_01Ta9LJjiH6wy25cs0-4N25TsnHy2qzeMvX76_1Yr7ODVM05o1kTqitNBUUjRKVcYUT29IIxovKCqucdMwiNyAlCFUwyxRa2TRSWMqs41PyeModfP8zYoh614--Sy81A8aShwJPKjipjO9D8Oj04Nvvxh80BX1kpRMrfWSlz6yS5eFkaRHxXy6ZKikT_A9i7GRr</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Martelli, Samuele</creator><creator>Mazzei, Luca</creator><creator>Canali, Carlo</creator><creator>Guardiani, Paolo</creator><creator>Giunta, Salvatore</creator><creator>Ghiazza, Alberto</creator><creator>Mondino, Ivan</creator><creator>Cannella, Ferdinando</creator><creator>Murino, Vittorio</creator><creator>Bue, Alessio Del</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2193-2419</orcidid></search><sort><creationdate>20180401</creationdate><title>Deep Endoscope: Intelligent Duct Inspection for the Avionic Industry</title><author>Martelli, Samuele ; Mazzei, Luca ; Canali, Carlo ; Guardiani, Paolo ; Giunta, Salvatore ; Ghiazza, Alberto ; Mondino, Ivan ; Cannella, Ferdinando ; Murino, Vittorio ; Bue, Alessio Del</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a82f69b8c704a967cf4f6b5c62347d6d9f8f2de3c08806942d29ed8aa86d12df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Avionics</topic><topic>Deep learning</topic><topic>Ducts</topic><topic>Endoscopes</topic><topic>Image analysis</topic><topic>Image detection</topic><topic>Inspection</topic><topic>Machining</topic><topic>Probes</topic><topic>Robot arms</topic><topic>robotic endoscope</topic><topic>Robots</topic><topic>Task analysis</topic><topic>Transmissions (machine elements)</topic><topic>visual inspection</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Martelli, Samuele</creatorcontrib><creatorcontrib>Mazzei, Luca</creatorcontrib><creatorcontrib>Canali, Carlo</creatorcontrib><creatorcontrib>Guardiani, Paolo</creatorcontrib><creatorcontrib>Giunta, Salvatore</creatorcontrib><creatorcontrib>Ghiazza, Alberto</creatorcontrib><creatorcontrib>Mondino, Ivan</creatorcontrib><creatorcontrib>Cannella, Ferdinando</creatorcontrib><creatorcontrib>Murino, Vittorio</creatorcontrib><creatorcontrib>Bue, Alessio Del</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martelli, Samuele</au><au>Mazzei, Luca</au><au>Canali, Carlo</au><au>Guardiani, Paolo</au><au>Giunta, Salvatore</au><au>Ghiazza, Alberto</au><au>Mondino, Ivan</au><au>Cannella, Ferdinando</au><au>Murino, Vittorio</au><au>Bue, Alessio Del</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Endoscope: Intelligent Duct Inspection for the Avionic Industry</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>14</volume><issue>4</issue><spage>1701</spage><epage>1711</epage><pages>1701-1711</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>We present the first autonomous endoscope for the visual inspection of very small ducts and cavities, up to a 6-mm diameter. The system has been designed, implemented, and tested in a challenging industrial scenario and in strict collaboration with an avionic industry partner. The inspected objects are metallic gearboxes eventually presenting different residuals (e.g., sand, machining swarfs, and metallic dust) inside the oil ducts. The automatic system is actuated by a robotic arm that moves the endoscope with a microcamera inside the gearbox duct, while a deep-learning-based spatio-temporal image analysis module detects, classifies, and localizes defects in real time. Feedback is given to the robotic arm in order to move or extract the endoscope given the detected anomalies. Evaluation provides a detection rate of nearly &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;98&lt;/tex-math&gt; &lt;/inline-formula&gt;% given different tests with different types of residuals and duct structures.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2807797</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2193-2419</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2018-04, Vol.14 (4), p.1701-1711
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2018_2807797
source IEEE Xplore (Online service)
subjects Avionics
Deep learning
Ducts
Endoscopes
Image analysis
Image detection
Inspection
Machining
Probes
Robot arms
robotic endoscope
Robots
Task analysis
Transmissions (machine elements)
visual inspection
Visualization
title Deep Endoscope: Intelligent Duct Inspection for the Avionic Industry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Endoscope:%20Intelligent%20Duct%20Inspection%20for%20the%20Avionic%20Industry&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Martelli,%20Samuele&rft.date=2018-04-01&rft.volume=14&rft.issue=4&rft.spage=1701&rft.epage=1711&rft.pages=1701-1711&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2807797&rft_dat=%3Cproquest_cross%3E2022069103%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-a82f69b8c704a967cf4f6b5c62347d6d9f8f2de3c08806942d29ed8aa86d12df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2022069103&rft_id=info:pmid/&rft_ieee_id=8295126&rfr_iscdi=true