Loading…
Object Classification Using CNN-Based Fusion of Vision and LIDAR in Autonomous Vehicle Environment
This paper presents an object classification method for vision and light detection and ranging (LIDAR) fusion of autonomous vehicles in the environment. This method is based on convolutional neural network (CNN) and image upsampling theory. By creating a point cloud of LIDAR data upsampling and conv...
Saved in:
Published in: | IEEE transactions on industrial informatics 2018-09, Vol.14 (9), p.4224-4231 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents an object classification method for vision and light detection and ranging (LIDAR) fusion of autonomous vehicles in the environment. This method is based on convolutional neural network (CNN) and image upsampling theory. By creating a point cloud of LIDAR data upsampling and converting into pixel-level depth information, depth information is connected with Red Green Blue data and fed into a deep CNN. The proposed method can obtain informative feature representation for object classification in autonomous vehicle environment using the integrated vision and LIDAR data. This method is also adopted to guarantee both object classification accuracy and minimal loss. Experimental results are presented and show the effectiveness and efficiency of object classification strategies. |
---|---|
ISSN: | 1551-3203 1941-0050 |
DOI: | 10.1109/TII.2018.2822828 |