Loading…

Event-Triggered Adaptive Neural Network Controller in a Cyber-Physical Framework

The importance of remotely placed controller in a cyber space with sensor-controller-actuator network has increased significantly in industrial, defense, and surveillance sector. Such network has large amount of sensor and controller data. A time-triggered control technique may generate redundant co...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2019-04, Vol.15 (4), p.2101-2111
Main Authors: Kar, Aniket K., Dhar, Narendra Kumar, Verma, Nishchal K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-80b7c28da5e3ea40eb3dccd2895f4df300aca0061c4d9c5176331612140e44a3
cites cdi_FETCH-LOGICAL-c291t-80b7c28da5e3ea40eb3dccd2895f4df300aca0061c4d9c5176331612140e44a3
container_end_page 2111
container_issue 4
container_start_page 2101
container_title IEEE transactions on industrial informatics
container_volume 15
creator Kar, Aniket K.
Dhar, Narendra Kumar
Verma, Nishchal K.
description The importance of remotely placed controller in a cyber space with sensor-controller-actuator network has increased significantly in industrial, defense, and surveillance sector. Such network has large amount of sensor and controller data. A time-triggered control technique may generate redundant control signals and put unnecessary data on network. Therefore, an event-triggered adaptive controller that generates control action at required instants using state- and error-based conditions has been developed in this paper. A data transmission framework has also been designed in this paper that addresses network delay and packet losses. The proposed controller-communication methodology has been validated through two case studies, first, temperature tracking for heating ventilation and air conditioning system and, second, real-time path tracking by automated guided vehicle. The proposed methodology has also been duly compared with its time-triggered counterpart. The control updates are reduced to approximately 41% and 64% in the two case studies, respectively. The experimental results also prove the designed controller to be efficient when compared with event-triggered incremental PID controller using the same data transmission framework.
doi_str_mv 10.1109/TII.2018.2861904
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2018_2861904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8424054</ieee_id><sourcerecordid>2203403374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-80b7c28da5e3ea40eb3dccd2895f4df300aca0061c4d9c5176331612140e44a3</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExG9m3hp4rk4sx_9OJIGlYQoh943y3aKxdLibsHw710C8fTO4XlnMg9jjwgTRMhfyvl8wgGzCc8SzEFesRHmEmMABddhVgpjwUHcsjvvNwAiBZGP2HJ2oG6IS9es1-SoiqaV2Q3NgaIP2jvThhh-e_cdFX03uL5tyUVNF5moOK7Ixcuvo29swF6d2dIJvGc3tWk9PVxyzMrXWVm8x4vPt3kxXcSW5zjEGaxSy7PKKBJkJNBKVNZWPMtVLataABhrABK0ssqtwjQRAhPkGFApjRiz5_Panet_9uQHven3rgsXNQ9fShAilYGCM2Vd772jWu9cszXuqBH0SZsO2vRJm75oC5Wnc6Uhon88k1yCkuIPquFoLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203403374</pqid></control><display><type>article</type><title>Event-Triggered Adaptive Neural Network Controller in a Cyber-Physical Framework</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kar, Aniket K. ; Dhar, Narendra Kumar ; Verma, Nishchal K.</creator><creatorcontrib>Kar, Aniket K. ; Dhar, Narendra Kumar ; Verma, Nishchal K.</creatorcontrib><description>The importance of remotely placed controller in a cyber space with sensor-controller-actuator network has increased significantly in industrial, defense, and surveillance sector. Such network has large amount of sensor and controller data. A time-triggered control technique may generate redundant control signals and put unnecessary data on network. Therefore, an event-triggered adaptive controller that generates control action at required instants using state- and error-based conditions has been developed in this paper. A data transmission framework has also been designed in this paper that addresses network delay and packet losses. The proposed controller-communication methodology has been validated through two case studies, first, temperature tracking for heating ventilation and air conditioning system and, second, real-time path tracking by automated guided vehicle. The proposed methodology has also been duly compared with its time-triggered counterpart. The control updates are reduced to approximately 41% and 64% in the two case studies, respectively. The experimental results also prove the designed controller to be efficient when compared with event-triggered incremental PID controller using the same data transmission framework.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2861904</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Adaptive control ; Adaptive neural network (NN) controller ; Adaptive systems ; Air conditioners ; Air conditioning ; Artificial neural networks ; Automated guided vehicles ; Case studies ; Control systems design ; Controllers ; cyber–physical system ; Data communication ; Data transmission ; Defense industry ; delay ; Delays ; event-triggered controller ; incremental PID controller ; Internet ; Neural networks ; Path tracking ; Proportional integral derivative ; Remote control ; Remote sensors ; System dynamics ; Uncertainty ; Ventilation</subject><ispartof>IEEE transactions on industrial informatics, 2019-04, Vol.15 (4), p.2101-2111</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-80b7c28da5e3ea40eb3dccd2895f4df300aca0061c4d9c5176331612140e44a3</citedby><cites>FETCH-LOGICAL-c291t-80b7c28da5e3ea40eb3dccd2895f4df300aca0061c4d9c5176331612140e44a3</cites><orcidid>0000-0002-5343-5812 ; 0000-0001-8752-5616 ; 0000-0002-1530-7430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8424054$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Kar, Aniket K.</creatorcontrib><creatorcontrib>Dhar, Narendra Kumar</creatorcontrib><creatorcontrib>Verma, Nishchal K.</creatorcontrib><title>Event-Triggered Adaptive Neural Network Controller in a Cyber-Physical Framework</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The importance of remotely placed controller in a cyber space with sensor-controller-actuator network has increased significantly in industrial, defense, and surveillance sector. Such network has large amount of sensor and controller data. A time-triggered control technique may generate redundant control signals and put unnecessary data on network. Therefore, an event-triggered adaptive controller that generates control action at required instants using state- and error-based conditions has been developed in this paper. A data transmission framework has also been designed in this paper that addresses network delay and packet losses. The proposed controller-communication methodology has been validated through two case studies, first, temperature tracking for heating ventilation and air conditioning system and, second, real-time path tracking by automated guided vehicle. The proposed methodology has also been duly compared with its time-triggered counterpart. The control updates are reduced to approximately 41% and 64% in the two case studies, respectively. The experimental results also prove the designed controller to be efficient when compared with event-triggered incremental PID controller using the same data transmission framework.</description><subject>Actuators</subject><subject>Adaptive control</subject><subject>Adaptive neural network (NN) controller</subject><subject>Adaptive systems</subject><subject>Air conditioners</subject><subject>Air conditioning</subject><subject>Artificial neural networks</subject><subject>Automated guided vehicles</subject><subject>Case studies</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>cyber–physical system</subject><subject>Data communication</subject><subject>Data transmission</subject><subject>Defense industry</subject><subject>delay</subject><subject>Delays</subject><subject>event-triggered controller</subject><subject>incremental PID controller</subject><subject>Internet</subject><subject>Neural networks</subject><subject>Path tracking</subject><subject>Proportional integral derivative</subject><subject>Remote control</subject><subject>Remote sensors</subject><subject>System dynamics</subject><subject>Uncertainty</subject><subject>Ventilation</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwkAQhjdGExG9m3hp4rk4sx_9OJIGlYQoh943y3aKxdLibsHw710C8fTO4XlnMg9jjwgTRMhfyvl8wgGzCc8SzEFesRHmEmMABddhVgpjwUHcsjvvNwAiBZGP2HJ2oG6IS9es1-SoiqaV2Q3NgaIP2jvThhh-e_cdFX03uL5tyUVNF5moOK7Ixcuvo29swF6d2dIJvGc3tWk9PVxyzMrXWVm8x4vPt3kxXcSW5zjEGaxSy7PKKBJkJNBKVNZWPMtVLataABhrABK0ssqtwjQRAhPkGFApjRiz5_Panet_9uQHven3rgsXNQ9fShAilYGCM2Vd772jWu9cszXuqBH0SZsO2vRJm75oC5Wnc6Uhon88k1yCkuIPquFoLQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Kar, Aniket K.</creator><creator>Dhar, Narendra Kumar</creator><creator>Verma, Nishchal K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5343-5812</orcidid><orcidid>https://orcid.org/0000-0001-8752-5616</orcidid><orcidid>https://orcid.org/0000-0002-1530-7430</orcidid></search><sort><creationdate>20190401</creationdate><title>Event-Triggered Adaptive Neural Network Controller in a Cyber-Physical Framework</title><author>Kar, Aniket K. ; Dhar, Narendra Kumar ; Verma, Nishchal K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-80b7c28da5e3ea40eb3dccd2895f4df300aca0061c4d9c5176331612140e44a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuators</topic><topic>Adaptive control</topic><topic>Adaptive neural network (NN) controller</topic><topic>Adaptive systems</topic><topic>Air conditioners</topic><topic>Air conditioning</topic><topic>Artificial neural networks</topic><topic>Automated guided vehicles</topic><topic>Case studies</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>cyber–physical system</topic><topic>Data communication</topic><topic>Data transmission</topic><topic>Defense industry</topic><topic>delay</topic><topic>Delays</topic><topic>event-triggered controller</topic><topic>incremental PID controller</topic><topic>Internet</topic><topic>Neural networks</topic><topic>Path tracking</topic><topic>Proportional integral derivative</topic><topic>Remote control</topic><topic>Remote sensors</topic><topic>System dynamics</topic><topic>Uncertainty</topic><topic>Ventilation</topic><toplevel>online_resources</toplevel><creatorcontrib>Kar, Aniket K.</creatorcontrib><creatorcontrib>Dhar, Narendra Kumar</creatorcontrib><creatorcontrib>Verma, Nishchal K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kar, Aniket K.</au><au>Dhar, Narendra Kumar</au><au>Verma, Nishchal K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event-Triggered Adaptive Neural Network Controller in a Cyber-Physical Framework</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>15</volume><issue>4</issue><spage>2101</spage><epage>2111</epage><pages>2101-2111</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The importance of remotely placed controller in a cyber space with sensor-controller-actuator network has increased significantly in industrial, defense, and surveillance sector. Such network has large amount of sensor and controller data. A time-triggered control technique may generate redundant control signals and put unnecessary data on network. Therefore, an event-triggered adaptive controller that generates control action at required instants using state- and error-based conditions has been developed in this paper. A data transmission framework has also been designed in this paper that addresses network delay and packet losses. The proposed controller-communication methodology has been validated through two case studies, first, temperature tracking for heating ventilation and air conditioning system and, second, real-time path tracking by automated guided vehicle. The proposed methodology has also been duly compared with its time-triggered counterpart. The control updates are reduced to approximately 41% and 64% in the two case studies, respectively. The experimental results also prove the designed controller to be efficient when compared with event-triggered incremental PID controller using the same data transmission framework.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2861904</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5343-5812</orcidid><orcidid>https://orcid.org/0000-0001-8752-5616</orcidid><orcidid>https://orcid.org/0000-0002-1530-7430</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2019-04, Vol.15 (4), p.2101-2111
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2018_2861904
source IEEE Electronic Library (IEL) Journals
subjects Actuators
Adaptive control
Adaptive neural network (NN) controller
Adaptive systems
Air conditioners
Air conditioning
Artificial neural networks
Automated guided vehicles
Case studies
Control systems design
Controllers
cyber–physical system
Data communication
Data transmission
Defense industry
delay
Delays
event-triggered controller
incremental PID controller
Internet
Neural networks
Path tracking
Proportional integral derivative
Remote control
Remote sensors
System dynamics
Uncertainty
Ventilation
title Event-Triggered Adaptive Neural Network Controller in a Cyber-Physical Framework
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event-Triggered%20Adaptive%20Neural%20Network%20Controller%20in%20a%20Cyber-Physical%20Framework&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Kar,%20Aniket%20K.&rft.date=2019-04-01&rft.volume=15&rft.issue=4&rft.spage=2101&rft.epage=2111&rft.pages=2101-2111&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2861904&rft_dat=%3Cproquest_cross%3E2203403374%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-80b7c28da5e3ea40eb3dccd2895f4df300aca0061c4d9c5176331612140e44a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203403374&rft_id=info:pmid/&rft_ieee_id=8424054&rfr_iscdi=true