Loading…

New Zeroing Neural Network Models for Solving Nonstationary Sylvester Equation With Verifications on Mobile Manipulators

Recurrent neural networks (RNNs) have found a great variety of application areas. As a special type of RNNs, zeroing neural network (ZNN), or termed Zhang neural network, has been reported to have powerful abilities to address various nonstationary problems. To overcome drawbacks and improve the per...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2019-09, Vol.15 (9), p.5011-5022
Main Authors: Yan, Xiaogang, Liu, Mei, Jin, Long, Li, Shuai, Hu, Bin, Zhang, Xin, Huang, Zhiguan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c221t-827d9728a07d0b0642a3d5d6dd7538eb5e77d755137227d6e0894ba72d9cb3e43
cites cdi_FETCH-LOGICAL-c221t-827d9728a07d0b0642a3d5d6dd7538eb5e77d755137227d6e0894ba72d9cb3e43
container_end_page 5022
container_issue 9
container_start_page 5011
container_title IEEE transactions on industrial informatics
container_volume 15
creator Yan, Xiaogang
Liu, Mei
Jin, Long
Li, Shuai
Hu, Bin
Zhang, Xin
Huang, Zhiguan
description Recurrent neural networks (RNNs) have found a great variety of application areas. As a special type of RNNs, zeroing neural network (ZNN), or termed Zhang neural network, has been reported to have powerful abilities to address various nonstationary problems. To overcome drawbacks and improve the performance of existing ZNN models, several modified ZNN models are proposed in this paper, which allow nonconvex activation functions and possess accelerated finite-time convergence property. Theoretical analyses suggest that the developed ZNN models are equipped with the global convergence property and the convergence-accelerated models are verified by the estimated upper bounds of convergence time. Finally, comparative and illustrative simulation results, including a verification on a mobile manipulator, are presented to illustrate the effectiveness and superiority of proposed ZNN models to existing models for solving nonstationary Sylvester equations.
doi_str_mv 10.1109/TII.2019.2899428
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2019_2899428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8642430</ieee_id><sourcerecordid>2285340556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-827d9728a07d0b0642a3d5d6dd7538eb5e77d755137227d6e0894ba72d9cb3e43</originalsourceid><addsrcrecordid>eNo9kM1PwzAMxSsEEmNwR-ISiXOHkzRLc0TTgEnbOGyAxKVKWw8ySjOSdmP_PdmHONl6-tl-flF0TaFHKai7-WjUY0BVj6VKJSw9iTpUJTQGEHAaeiFozBnw8-jC-yUAl8BVJ_qd4oa8o7Om_iBTbJ2uQmk21n2RiS2x8mRhHZnZar0nbO0b3Rhba7cls221Rt-gI8Ofdq-SN9N8kld0ZmGKveJJUCc2NxWSia7Nqq10Y52_jM4WuvJ4dazd6OVhOB88xePnx9HgfhwXjNEmTpkslWSpBllCDv2EaV6Ksl-WUvAUc4FShlZQLllA-wipSnItWamKnGPCu9HtYe_K2Z82uM2WtnV1OJkxlgqegBD9QMGBKpz13uEiWznzHX7MKGS7fLOQb7bLNzvmG0ZuDiMGEf_xNDhMOPA_YwJ3-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285340556</pqid></control><display><type>article</type><title>New Zeroing Neural Network Models for Solving Nonstationary Sylvester Equation With Verifications on Mobile Manipulators</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yan, Xiaogang ; Liu, Mei ; Jin, Long ; Li, Shuai ; Hu, Bin ; Zhang, Xin ; Huang, Zhiguan</creator><creatorcontrib>Yan, Xiaogang ; Liu, Mei ; Jin, Long ; Li, Shuai ; Hu, Bin ; Zhang, Xin ; Huang, Zhiguan</creatorcontrib><description>Recurrent neural networks (RNNs) have found a great variety of application areas. As a special type of RNNs, zeroing neural network (ZNN), or termed Zhang neural network, has been reported to have powerful abilities to address various nonstationary problems. To overcome drawbacks and improve the performance of existing ZNN models, several modified ZNN models are proposed in this paper, which allow nonconvex activation functions and possess accelerated finite-time convergence property. Theoretical analyses suggest that the developed ZNN models are equipped with the global convergence property and the convergence-accelerated models are verified by the estimated upper bounds of convergence time. Finally, comparative and illustrative simulation results, including a verification on a mobile manipulator, are presented to illustrate the effectiveness and superiority of proposed ZNN models to existing models for solving nonstationary Sylvester equations.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2019.2899428</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Computational modeling ; Computer simulation ; Convergence ; Economic models ; Finite-time convergence ; Informatics ; Mathematical model ; Neural networks ; nonstationary Sylvester equation ; Performance enhancement ; recurrent neural network (RNN) ; Recurrent neural networks ; saturation activation functionzeroing neural network (ZNN) ; Upper bounds ; Wireless networks</subject><ispartof>IEEE transactions on industrial informatics, 2019-09, Vol.15 (9), p.5011-5022</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-827d9728a07d0b0642a3d5d6dd7538eb5e77d755137227d6e0894ba72d9cb3e43</citedby><cites>FETCH-LOGICAL-c221t-827d9728a07d0b0642a3d5d6dd7538eb5e77d755137227d6e0894ba72d9cb3e43</cites><orcidid>0000-0001-8316-5289 ; 0000-0002-5329-5098 ; 0000-0003-3514-5413 ; 0000-0002-2057-7021 ; 0000-0001-9253-5114 ; 0000-0002-4968-2722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8642430$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Yan, Xiaogang</creatorcontrib><creatorcontrib>Liu, Mei</creatorcontrib><creatorcontrib>Jin, Long</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Huang, Zhiguan</creatorcontrib><title>New Zeroing Neural Network Models for Solving Nonstationary Sylvester Equation With Verifications on Mobile Manipulators</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Recurrent neural networks (RNNs) have found a great variety of application areas. As a special type of RNNs, zeroing neural network (ZNN), or termed Zhang neural network, has been reported to have powerful abilities to address various nonstationary problems. To overcome drawbacks and improve the performance of existing ZNN models, several modified ZNN models are proposed in this paper, which allow nonconvex activation functions and possess accelerated finite-time convergence property. Theoretical analyses suggest that the developed ZNN models are equipped with the global convergence property and the convergence-accelerated models are verified by the estimated upper bounds of convergence time. Finally, comparative and illustrative simulation results, including a verification on a mobile manipulator, are presented to illustrate the effectiveness and superiority of proposed ZNN models to existing models for solving nonstationary Sylvester equations.</description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Economic models</subject><subject>Finite-time convergence</subject><subject>Informatics</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>nonstationary Sylvester equation</subject><subject>Performance enhancement</subject><subject>recurrent neural network (RNN)</subject><subject>Recurrent neural networks</subject><subject>saturation activation functionzeroing neural network (ZNN)</subject><subject>Upper bounds</subject><subject>Wireless networks</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1PwzAMxSsEEmNwR-ISiXOHkzRLc0TTgEnbOGyAxKVKWw8ySjOSdmP_PdmHONl6-tl-flF0TaFHKai7-WjUY0BVj6VKJSw9iTpUJTQGEHAaeiFozBnw8-jC-yUAl8BVJ_qd4oa8o7Om_iBTbJ2uQmk21n2RiS2x8mRhHZnZar0nbO0b3Rhba7cls221Rt-gI8Ofdq-SN9N8kld0ZmGKveJJUCc2NxWSia7Nqq10Y52_jM4WuvJ4dazd6OVhOB88xePnx9HgfhwXjNEmTpkslWSpBllCDv2EaV6Ksl-WUvAUc4FShlZQLllA-wipSnItWamKnGPCu9HtYe_K2Z82uM2WtnV1OJkxlgqegBD9QMGBKpz13uEiWznzHX7MKGS7fLOQb7bLNzvmG0ZuDiMGEf_xNDhMOPA_YwJ3-g</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Yan, Xiaogang</creator><creator>Liu, Mei</creator><creator>Jin, Long</creator><creator>Li, Shuai</creator><creator>Hu, Bin</creator><creator>Zhang, Xin</creator><creator>Huang, Zhiguan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8316-5289</orcidid><orcidid>https://orcid.org/0000-0002-5329-5098</orcidid><orcidid>https://orcid.org/0000-0003-3514-5413</orcidid><orcidid>https://orcid.org/0000-0002-2057-7021</orcidid><orcidid>https://orcid.org/0000-0001-9253-5114</orcidid><orcidid>https://orcid.org/0000-0002-4968-2722</orcidid></search><sort><creationdate>20190901</creationdate><title>New Zeroing Neural Network Models for Solving Nonstationary Sylvester Equation With Verifications on Mobile Manipulators</title><author>Yan, Xiaogang ; Liu, Mei ; Jin, Long ; Li, Shuai ; Hu, Bin ; Zhang, Xin ; Huang, Zhiguan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-827d9728a07d0b0642a3d5d6dd7538eb5e77d755137227d6e0894ba72d9cb3e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Economic models</topic><topic>Finite-time convergence</topic><topic>Informatics</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>nonstationary Sylvester equation</topic><topic>Performance enhancement</topic><topic>recurrent neural network (RNN)</topic><topic>Recurrent neural networks</topic><topic>saturation activation functionzeroing neural network (ZNN)</topic><topic>Upper bounds</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xiaogang</creatorcontrib><creatorcontrib>Liu, Mei</creatorcontrib><creatorcontrib>Jin, Long</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Huang, Zhiguan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xiaogang</au><au>Liu, Mei</au><au>Jin, Long</au><au>Li, Shuai</au><au>Hu, Bin</au><au>Zhang, Xin</au><au>Huang, Zhiguan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Zeroing Neural Network Models for Solving Nonstationary Sylvester Equation With Verifications on Mobile Manipulators</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>15</volume><issue>9</issue><spage>5011</spage><epage>5022</epage><pages>5011-5022</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Recurrent neural networks (RNNs) have found a great variety of application areas. As a special type of RNNs, zeroing neural network (ZNN), or termed Zhang neural network, has been reported to have powerful abilities to address various nonstationary problems. To overcome drawbacks and improve the performance of existing ZNN models, several modified ZNN models are proposed in this paper, which allow nonconvex activation functions and possess accelerated finite-time convergence property. Theoretical analyses suggest that the developed ZNN models are equipped with the global convergence property and the convergence-accelerated models are verified by the estimated upper bounds of convergence time. Finally, comparative and illustrative simulation results, including a verification on a mobile manipulator, are presented to illustrate the effectiveness and superiority of proposed ZNN models to existing models for solving nonstationary Sylvester equations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2019.2899428</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8316-5289</orcidid><orcidid>https://orcid.org/0000-0002-5329-5098</orcidid><orcidid>https://orcid.org/0000-0003-3514-5413</orcidid><orcidid>https://orcid.org/0000-0002-2057-7021</orcidid><orcidid>https://orcid.org/0000-0001-9253-5114</orcidid><orcidid>https://orcid.org/0000-0002-4968-2722</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2019-09, Vol.15 (9), p.5011-5022
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2019_2899428
source IEEE Electronic Library (IEL) Journals
subjects Analytical models
Computational modeling
Computer simulation
Convergence
Economic models
Finite-time convergence
Informatics
Mathematical model
Neural networks
nonstationary Sylvester equation
Performance enhancement
recurrent neural network (RNN)
Recurrent neural networks
saturation activation functionzeroing neural network (ZNN)
Upper bounds
Wireless networks
title New Zeroing Neural Network Models for Solving Nonstationary Sylvester Equation With Verifications on Mobile Manipulators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Zeroing%20Neural%20Network%20Models%20for%20Solving%20Nonstationary%20Sylvester%20Equation%20With%20Verifications%20on%20Mobile%20Manipulators&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Yan,%20Xiaogang&rft.date=2019-09-01&rft.volume=15&rft.issue=9&rft.spage=5011&rft.epage=5022&rft.pages=5011-5022&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2019.2899428&rft_dat=%3Cproquest_cross%3E2285340556%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-827d9728a07d0b0642a3d5d6dd7538eb5e77d755137227d6e0894ba72d9cb3e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2285340556&rft_id=info:pmid/&rft_ieee_id=8642430&rfr_iscdi=true