Loading…
New Zeroing Neural Network Models for Solving Nonstationary Sylvester Equation With Verifications on Mobile Manipulators
Recurrent neural networks (RNNs) have found a great variety of application areas. As a special type of RNNs, zeroing neural network (ZNN), or termed Zhang neural network, has been reported to have powerful abilities to address various nonstationary problems. To overcome drawbacks and improve the per...
Saved in:
Published in: | IEEE transactions on industrial informatics 2019-09, Vol.15 (9), p.5011-5022 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c221t-827d9728a07d0b0642a3d5d6dd7538eb5e77d755137227d6e0894ba72d9cb3e43 |
---|---|
cites | cdi_FETCH-LOGICAL-c221t-827d9728a07d0b0642a3d5d6dd7538eb5e77d755137227d6e0894ba72d9cb3e43 |
container_end_page | 5022 |
container_issue | 9 |
container_start_page | 5011 |
container_title | IEEE transactions on industrial informatics |
container_volume | 15 |
creator | Yan, Xiaogang Liu, Mei Jin, Long Li, Shuai Hu, Bin Zhang, Xin Huang, Zhiguan |
description | Recurrent neural networks (RNNs) have found a great variety of application areas. As a special type of RNNs, zeroing neural network (ZNN), or termed Zhang neural network, has been reported to have powerful abilities to address various nonstationary problems. To overcome drawbacks and improve the performance of existing ZNN models, several modified ZNN models are proposed in this paper, which allow nonconvex activation functions and possess accelerated finite-time convergence property. Theoretical analyses suggest that the developed ZNN models are equipped with the global convergence property and the convergence-accelerated models are verified by the estimated upper bounds of convergence time. Finally, comparative and illustrative simulation results, including a verification on a mobile manipulator, are presented to illustrate the effectiveness and superiority of proposed ZNN models to existing models for solving nonstationary Sylvester equations. |
doi_str_mv | 10.1109/TII.2019.2899428 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2019_2899428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8642430</ieee_id><sourcerecordid>2285340556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-827d9728a07d0b0642a3d5d6dd7538eb5e77d755137227d6e0894ba72d9cb3e43</originalsourceid><addsrcrecordid>eNo9kM1PwzAMxSsEEmNwR-ISiXOHkzRLc0TTgEnbOGyAxKVKWw8ySjOSdmP_PdmHONl6-tl-flF0TaFHKai7-WjUY0BVj6VKJSw9iTpUJTQGEHAaeiFozBnw8-jC-yUAl8BVJ_qd4oa8o7Om_iBTbJ2uQmk21n2RiS2x8mRhHZnZar0nbO0b3Rhba7cls221Rt-gI8Ofdq-SN9N8kld0ZmGKveJJUCc2NxWSia7Nqq10Y52_jM4WuvJ4dazd6OVhOB88xePnx9HgfhwXjNEmTpkslWSpBllCDv2EaV6Ksl-WUvAUc4FShlZQLllA-wipSnItWamKnGPCu9HtYe_K2Z82uM2WtnV1OJkxlgqegBD9QMGBKpz13uEiWznzHX7MKGS7fLOQb7bLNzvmG0ZuDiMGEf_xNDhMOPA_YwJ3-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285340556</pqid></control><display><type>article</type><title>New Zeroing Neural Network Models for Solving Nonstationary Sylvester Equation With Verifications on Mobile Manipulators</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yan, Xiaogang ; Liu, Mei ; Jin, Long ; Li, Shuai ; Hu, Bin ; Zhang, Xin ; Huang, Zhiguan</creator><creatorcontrib>Yan, Xiaogang ; Liu, Mei ; Jin, Long ; Li, Shuai ; Hu, Bin ; Zhang, Xin ; Huang, Zhiguan</creatorcontrib><description>Recurrent neural networks (RNNs) have found a great variety of application areas. As a special type of RNNs, zeroing neural network (ZNN), or termed Zhang neural network, has been reported to have powerful abilities to address various nonstationary problems. To overcome drawbacks and improve the performance of existing ZNN models, several modified ZNN models are proposed in this paper, which allow nonconvex activation functions and possess accelerated finite-time convergence property. Theoretical analyses suggest that the developed ZNN models are equipped with the global convergence property and the convergence-accelerated models are verified by the estimated upper bounds of convergence time. Finally, comparative and illustrative simulation results, including a verification on a mobile manipulator, are presented to illustrate the effectiveness and superiority of proposed ZNN models to existing models for solving nonstationary Sylvester equations.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2019.2899428</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Computational modeling ; Computer simulation ; Convergence ; Economic models ; Finite-time convergence ; Informatics ; Mathematical model ; Neural networks ; nonstationary Sylvester equation ; Performance enhancement ; recurrent neural network (RNN) ; Recurrent neural networks ; saturation activation functionzeroing neural network (ZNN) ; Upper bounds ; Wireless networks</subject><ispartof>IEEE transactions on industrial informatics, 2019-09, Vol.15 (9), p.5011-5022</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-827d9728a07d0b0642a3d5d6dd7538eb5e77d755137227d6e0894ba72d9cb3e43</citedby><cites>FETCH-LOGICAL-c221t-827d9728a07d0b0642a3d5d6dd7538eb5e77d755137227d6e0894ba72d9cb3e43</cites><orcidid>0000-0001-8316-5289 ; 0000-0002-5329-5098 ; 0000-0003-3514-5413 ; 0000-0002-2057-7021 ; 0000-0001-9253-5114 ; 0000-0002-4968-2722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8642430$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Yan, Xiaogang</creatorcontrib><creatorcontrib>Liu, Mei</creatorcontrib><creatorcontrib>Jin, Long</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Huang, Zhiguan</creatorcontrib><title>New Zeroing Neural Network Models for Solving Nonstationary Sylvester Equation With Verifications on Mobile Manipulators</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Recurrent neural networks (RNNs) have found a great variety of application areas. As a special type of RNNs, zeroing neural network (ZNN), or termed Zhang neural network, has been reported to have powerful abilities to address various nonstationary problems. To overcome drawbacks and improve the performance of existing ZNN models, several modified ZNN models are proposed in this paper, which allow nonconvex activation functions and possess accelerated finite-time convergence property. Theoretical analyses suggest that the developed ZNN models are equipped with the global convergence property and the convergence-accelerated models are verified by the estimated upper bounds of convergence time. Finally, comparative and illustrative simulation results, including a verification on a mobile manipulator, are presented to illustrate the effectiveness and superiority of proposed ZNN models to existing models for solving nonstationary Sylvester equations.</description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Economic models</subject><subject>Finite-time convergence</subject><subject>Informatics</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>nonstationary Sylvester equation</subject><subject>Performance enhancement</subject><subject>recurrent neural network (RNN)</subject><subject>Recurrent neural networks</subject><subject>saturation activation functionzeroing neural network (ZNN)</subject><subject>Upper bounds</subject><subject>Wireless networks</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1PwzAMxSsEEmNwR-ISiXOHkzRLc0TTgEnbOGyAxKVKWw8ySjOSdmP_PdmHONl6-tl-flF0TaFHKai7-WjUY0BVj6VKJSw9iTpUJTQGEHAaeiFozBnw8-jC-yUAl8BVJ_qd4oa8o7Om_iBTbJ2uQmk21n2RiS2x8mRhHZnZar0nbO0b3Rhba7cls221Rt-gI8Ofdq-SN9N8kld0ZmGKveJJUCc2NxWSia7Nqq10Y52_jM4WuvJ4dazd6OVhOB88xePnx9HgfhwXjNEmTpkslWSpBllCDv2EaV6Ksl-WUvAUc4FShlZQLllA-wipSnItWamKnGPCu9HtYe_K2Z82uM2WtnV1OJkxlgqegBD9QMGBKpz13uEiWznzHX7MKGS7fLOQb7bLNzvmG0ZuDiMGEf_xNDhMOPA_YwJ3-g</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Yan, Xiaogang</creator><creator>Liu, Mei</creator><creator>Jin, Long</creator><creator>Li, Shuai</creator><creator>Hu, Bin</creator><creator>Zhang, Xin</creator><creator>Huang, Zhiguan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8316-5289</orcidid><orcidid>https://orcid.org/0000-0002-5329-5098</orcidid><orcidid>https://orcid.org/0000-0003-3514-5413</orcidid><orcidid>https://orcid.org/0000-0002-2057-7021</orcidid><orcidid>https://orcid.org/0000-0001-9253-5114</orcidid><orcidid>https://orcid.org/0000-0002-4968-2722</orcidid></search><sort><creationdate>20190901</creationdate><title>New Zeroing Neural Network Models for Solving Nonstationary Sylvester Equation With Verifications on Mobile Manipulators</title><author>Yan, Xiaogang ; Liu, Mei ; Jin, Long ; Li, Shuai ; Hu, Bin ; Zhang, Xin ; Huang, Zhiguan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-827d9728a07d0b0642a3d5d6dd7538eb5e77d755137227d6e0894ba72d9cb3e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Economic models</topic><topic>Finite-time convergence</topic><topic>Informatics</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>nonstationary Sylvester equation</topic><topic>Performance enhancement</topic><topic>recurrent neural network (RNN)</topic><topic>Recurrent neural networks</topic><topic>saturation activation functionzeroing neural network (ZNN)</topic><topic>Upper bounds</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xiaogang</creatorcontrib><creatorcontrib>Liu, Mei</creatorcontrib><creatorcontrib>Jin, Long</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Hu, Bin</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Huang, Zhiguan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Xiaogang</au><au>Liu, Mei</au><au>Jin, Long</au><au>Li, Shuai</au><au>Hu, Bin</au><au>Zhang, Xin</au><au>Huang, Zhiguan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Zeroing Neural Network Models for Solving Nonstationary Sylvester Equation With Verifications on Mobile Manipulators</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>15</volume><issue>9</issue><spage>5011</spage><epage>5022</epage><pages>5011-5022</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Recurrent neural networks (RNNs) have found a great variety of application areas. As a special type of RNNs, zeroing neural network (ZNN), or termed Zhang neural network, has been reported to have powerful abilities to address various nonstationary problems. To overcome drawbacks and improve the performance of existing ZNN models, several modified ZNN models are proposed in this paper, which allow nonconvex activation functions and possess accelerated finite-time convergence property. Theoretical analyses suggest that the developed ZNN models are equipped with the global convergence property and the convergence-accelerated models are verified by the estimated upper bounds of convergence time. Finally, comparative and illustrative simulation results, including a verification on a mobile manipulator, are presented to illustrate the effectiveness and superiority of proposed ZNN models to existing models for solving nonstationary Sylvester equations.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2019.2899428</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8316-5289</orcidid><orcidid>https://orcid.org/0000-0002-5329-5098</orcidid><orcidid>https://orcid.org/0000-0003-3514-5413</orcidid><orcidid>https://orcid.org/0000-0002-2057-7021</orcidid><orcidid>https://orcid.org/0000-0001-9253-5114</orcidid><orcidid>https://orcid.org/0000-0002-4968-2722</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2019-09, Vol.15 (9), p.5011-5022 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2019_2899428 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Analytical models Computational modeling Computer simulation Convergence Economic models Finite-time convergence Informatics Mathematical model Neural networks nonstationary Sylvester equation Performance enhancement recurrent neural network (RNN) Recurrent neural networks saturation activation functionzeroing neural network (ZNN) Upper bounds Wireless networks |
title | New Zeroing Neural Network Models for Solving Nonstationary Sylvester Equation With Verifications on Mobile Manipulators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Zeroing%20Neural%20Network%20Models%20for%20Solving%20Nonstationary%20Sylvester%20Equation%20With%20Verifications%20on%20Mobile%20Manipulators&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Yan,%20Xiaogang&rft.date=2019-09-01&rft.volume=15&rft.issue=9&rft.spage=5011&rft.epage=5022&rft.pages=5011-5022&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2019.2899428&rft_dat=%3Cproquest_cross%3E2285340556%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-827d9728a07d0b0642a3d5d6dd7538eb5e77d755137227d6e0894ba72d9cb3e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2285340556&rft_id=info:pmid/&rft_ieee_id=8642430&rfr_iscdi=true |