Loading…

A Federated Learning-Based License Plate Recognition Scheme for 5G-Enabled Internet of Vehicles

License plate is an essential characteristic to identify vehicles for the traffic management, and thus, license plate recognition is important for Internet of Vehicles. Since 5G has been widely covered, mobile devices are utilized to assist the traffic management, which is a significant part of Indu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2021-12, Vol.17 (12), p.8523-8530
Main Authors: Kong, Xiangjie, Wang, Kailai, Hou, Mingliang, Hao, Xinyu, Shen, Guojiang, Chen, Xin, Xia, Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:License plate is an essential characteristic to identify vehicles for the traffic management, and thus, license plate recognition is important for Internet of Vehicles. Since 5G has been widely covered, mobile devices are utilized to assist the traffic management, which is a significant part of Industry 4.0. However, there have always been privacy risks due to centralized training of models. Also, the trained model cannot be directly deployed on the mobile device due to its large number of parameters. In this article, we propose a federated learning-based license plate recognition framework (FedLPR) to solve these problems. We design detection and recognition model to apply in the mobile device. In terms of user privacy, data in individuals is harnessed on their mobile devices instead of the server to train models based on federated learning. Extensive experiments demonstrate that FedLPR has high accuracy and acceptable communication cost while preserving user privacy.
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2021.3067324