Loading…
An Interrogative Survey of Explainable AI in Manufacturing
Artificial intelligence (AI) is a driving force behind Industry 4.0 in manufacturing. Specifically, machine learning has been applied to all parts of the manufacturing process: from product design optimization to anomaly detection for quality control. Explainable AI (XAI) and interpretable AI (IAI)...
Saved in:
Published in: | IEEE transactions on industrial informatics 2024-05, Vol.20 (5), p.7069-7081 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-2b9104b8fa934467cad054073775999a5a1efd60e8b932ef8ca6642666fb7cff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-2b9104b8fa934467cad054073775999a5a1efd60e8b932ef8ca6642666fb7cff3 |
container_end_page | 7081 |
container_issue | 5 |
container_start_page | 7069 |
container_title | IEEE transactions on industrial informatics |
container_volume | 20 |
creator | Alexander, Zoe Chau, Duen Horng Saldana, Christopher |
description | Artificial intelligence (AI) is a driving force behind Industry 4.0 in manufacturing. Specifically, machine learning has been applied to all parts of the manufacturing process: from product design optimization to anomaly detection for quality control. Explainable AI (XAI) and interpretable AI (IAI) methods have been developed to provide transparency into how models make decisions. This survey presents a thorough review of who, what, when, where, why, and how both IAI and XAI methods have been used in manufacturing. Due to the multidisciplinary nature of manufacturing, this work provides the results from a systematic literature review that surveyed papers from highly rated venues in multiple manufacturing and AI-related fields to give the reader a holistic view of the space. This survey is intended to help both individuals from academia and industry quickly understand the applications, areas of research, and future work involved with creating explainable industrial solutions. |
doi_str_mv | 10.1109/TII.2024.3361489 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2024_3361489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10449717</ieee_id><sourcerecordid>3052200939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-2b9104b8fa934467cad054073775999a5a1efd60e8b932ef8ca6642666fb7cff3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWwMzBYYk55_s5jq6oCkYoYKLPlpHaVqjjFSSr670nVDkzvDufeJx1C7hlMGAN8WhbFhAOXEyE0kzlekBFDyTIABZdDVoplgoO4JjdtuwEQBgSOyPM00iJ2PqVm7bp67-lnn_b-QJtA57-7raujK7eeTgtaR_ruYh9c1fWpjutbchXctvV35zsmXy_z5ewtW3y8FrPpIqs48i7jJTKQZR4cCim1qdwKlAQjjFGI6JRjPqw0-LxEwX3IK6e15FrrUJoqBDEmj6fdXWp-et92dtP0KQ4vrQDFOQAKHCg4UVVq2jb5YHep_nbpYBnYoyE7GLJHQ_ZsaKg8nCq19_4fLiUaZsQfuw1gWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052200939</pqid></control><display><type>article</type><title>An Interrogative Survey of Explainable AI in Manufacturing</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Alexander, Zoe ; Chau, Duen Horng ; Saldana, Christopher</creator><creatorcontrib>Alexander, Zoe ; Chau, Duen Horng ; Saldana, Christopher</creatorcontrib><description>Artificial intelligence (AI) is a driving force behind Industry 4.0 in manufacturing. Specifically, machine learning has been applied to all parts of the manufacturing process: from product design optimization to anomaly detection for quality control. Explainable AI (XAI) and interpretable AI (IAI) methods have been developed to provide transparency into how models make decisions. This survey presents a thorough review of who, what, when, where, why, and how both IAI and XAI methods have been used in manufacturing. Due to the multidisciplinary nature of manufacturing, this work provides the results from a systematic literature review that surveyed papers from highly rated venues in multiple manufacturing and AI-related fields to give the reader a holistic view of the space. This survey is intended to help both individuals from academia and industry quickly understand the applications, areas of research, and future work involved with creating explainable industrial solutions.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3361489</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anomalies ; Artificial intelligence ; Artificial intelligence (AI) ; Biological system modeling ; Data models ; deep learning (DL) ; Design optimization ; Explainable artificial intelligence ; explainable artificial intelligence (XAI) ; human–computer interaction (HCI) ; Industries ; Industry 4.0 ; interpretable artificial intelligence (IAI) ; Literature reviews ; Machine learning ; machine learning (ML) ; Manufacturing ; Predictive models ; Product design ; Quality control ; Surveys</subject><ispartof>IEEE transactions on industrial informatics, 2024-05, Vol.20 (5), p.7069-7081</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-2b9104b8fa934467cad054073775999a5a1efd60e8b932ef8ca6642666fb7cff3</citedby><cites>FETCH-LOGICAL-c292t-2b9104b8fa934467cad054073775999a5a1efd60e8b932ef8ca6642666fb7cff3</cites><orcidid>0000-0003-1427-7732 ; 0000-0001-9824-3323 ; 0000-0001-8687-5649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10449717$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Alexander, Zoe</creatorcontrib><creatorcontrib>Chau, Duen Horng</creatorcontrib><creatorcontrib>Saldana, Christopher</creatorcontrib><title>An Interrogative Survey of Explainable AI in Manufacturing</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Artificial intelligence (AI) is a driving force behind Industry 4.0 in manufacturing. Specifically, machine learning has been applied to all parts of the manufacturing process: from product design optimization to anomaly detection for quality control. Explainable AI (XAI) and interpretable AI (IAI) methods have been developed to provide transparency into how models make decisions. This survey presents a thorough review of who, what, when, where, why, and how both IAI and XAI methods have been used in manufacturing. Due to the multidisciplinary nature of manufacturing, this work provides the results from a systematic literature review that surveyed papers from highly rated venues in multiple manufacturing and AI-related fields to give the reader a holistic view of the space. This survey is intended to help both individuals from academia and industry quickly understand the applications, areas of research, and future work involved with creating explainable industrial solutions.</description><subject>Anomalies</subject><subject>Artificial intelligence</subject><subject>Artificial intelligence (AI)</subject><subject>Biological system modeling</subject><subject>Data models</subject><subject>deep learning (DL)</subject><subject>Design optimization</subject><subject>Explainable artificial intelligence</subject><subject>explainable artificial intelligence (XAI)</subject><subject>human–computer interaction (HCI)</subject><subject>Industries</subject><subject>Industry 4.0</subject><subject>interpretable artificial intelligence (IAI)</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>Manufacturing</subject><subject>Predictive models</subject><subject>Product design</subject><subject>Quality control</subject><subject>Surveys</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAURS0EEqWwMzBYYk55_s5jq6oCkYoYKLPlpHaVqjjFSSr670nVDkzvDufeJx1C7hlMGAN8WhbFhAOXEyE0kzlekBFDyTIABZdDVoplgoO4JjdtuwEQBgSOyPM00iJ2PqVm7bp67-lnn_b-QJtA57-7raujK7eeTgtaR_ruYh9c1fWpjutbchXctvV35zsmXy_z5ewtW3y8FrPpIqs48i7jJTKQZR4cCim1qdwKlAQjjFGI6JRjPqw0-LxEwX3IK6e15FrrUJoqBDEmj6fdXWp-et92dtP0KQ4vrQDFOQAKHCg4UVVq2jb5YHep_nbpYBnYoyE7GLJHQ_ZsaKg8nCq19_4fLiUaZsQfuw1gWA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Alexander, Zoe</creator><creator>Chau, Duen Horng</creator><creator>Saldana, Christopher</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1427-7732</orcidid><orcidid>https://orcid.org/0000-0001-9824-3323</orcidid><orcidid>https://orcid.org/0000-0001-8687-5649</orcidid></search><sort><creationdate>20240501</creationdate><title>An Interrogative Survey of Explainable AI in Manufacturing</title><author>Alexander, Zoe ; Chau, Duen Horng ; Saldana, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-2b9104b8fa934467cad054073775999a5a1efd60e8b932ef8ca6642666fb7cff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomalies</topic><topic>Artificial intelligence</topic><topic>Artificial intelligence (AI)</topic><topic>Biological system modeling</topic><topic>Data models</topic><topic>deep learning (DL)</topic><topic>Design optimization</topic><topic>Explainable artificial intelligence</topic><topic>explainable artificial intelligence (XAI)</topic><topic>human–computer interaction (HCI)</topic><topic>Industries</topic><topic>Industry 4.0</topic><topic>interpretable artificial intelligence (IAI)</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>Manufacturing</topic><topic>Predictive models</topic><topic>Product design</topic><topic>Quality control</topic><topic>Surveys</topic><toplevel>online_resources</toplevel><creatorcontrib>Alexander, Zoe</creatorcontrib><creatorcontrib>Chau, Duen Horng</creatorcontrib><creatorcontrib>Saldana, Christopher</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexander, Zoe</au><au>Chau, Duen Horng</au><au>Saldana, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Interrogative Survey of Explainable AI in Manufacturing</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>20</volume><issue>5</issue><spage>7069</spage><epage>7081</epage><pages>7069-7081</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Artificial intelligence (AI) is a driving force behind Industry 4.0 in manufacturing. Specifically, machine learning has been applied to all parts of the manufacturing process: from product design optimization to anomaly detection for quality control. Explainable AI (XAI) and interpretable AI (IAI) methods have been developed to provide transparency into how models make decisions. This survey presents a thorough review of who, what, when, where, why, and how both IAI and XAI methods have been used in manufacturing. Due to the multidisciplinary nature of manufacturing, this work provides the results from a systematic literature review that surveyed papers from highly rated venues in multiple manufacturing and AI-related fields to give the reader a holistic view of the space. This survey is intended to help both individuals from academia and industry quickly understand the applications, areas of research, and future work involved with creating explainable industrial solutions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2024.3361489</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1427-7732</orcidid><orcidid>https://orcid.org/0000-0001-9824-3323</orcidid><orcidid>https://orcid.org/0000-0001-8687-5649</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2024-05, Vol.20 (5), p.7069-7081 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2024_3361489 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Anomalies Artificial intelligence Artificial intelligence (AI) Biological system modeling Data models deep learning (DL) Design optimization Explainable artificial intelligence explainable artificial intelligence (XAI) human–computer interaction (HCI) Industries Industry 4.0 interpretable artificial intelligence (IAI) Literature reviews Machine learning machine learning (ML) Manufacturing Predictive models Product design Quality control Surveys |
title | An Interrogative Survey of Explainable AI in Manufacturing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Interrogative%20Survey%20of%20Explainable%20AI%20in%20Manufacturing&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Alexander,%20Zoe&rft.date=2024-05-01&rft.volume=20&rft.issue=5&rft.spage=7069&rft.epage=7081&rft.pages=7069-7081&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3361489&rft_dat=%3Cproquest_cross%3E3052200939%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-2b9104b8fa934467cad054073775999a5a1efd60e8b932ef8ca6642666fb7cff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3052200939&rft_id=info:pmid/&rft_ieee_id=10449717&rfr_iscdi=true |