Loading…

An Interrogative Survey of Explainable AI in Manufacturing

Artificial intelligence (AI) is a driving force behind Industry 4.0 in manufacturing. Specifically, machine learning has been applied to all parts of the manufacturing process: from product design optimization to anomaly detection for quality control. Explainable AI (XAI) and interpretable AI (IAI)...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2024-05, Vol.20 (5), p.7069-7081
Main Authors: Alexander, Zoe, Chau, Duen Horng, Saldana, Christopher
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-2b9104b8fa934467cad054073775999a5a1efd60e8b932ef8ca6642666fb7cff3
cites cdi_FETCH-LOGICAL-c292t-2b9104b8fa934467cad054073775999a5a1efd60e8b932ef8ca6642666fb7cff3
container_end_page 7081
container_issue 5
container_start_page 7069
container_title IEEE transactions on industrial informatics
container_volume 20
creator Alexander, Zoe
Chau, Duen Horng
Saldana, Christopher
description Artificial intelligence (AI) is a driving force behind Industry 4.0 in manufacturing. Specifically, machine learning has been applied to all parts of the manufacturing process: from product design optimization to anomaly detection for quality control. Explainable AI (XAI) and interpretable AI (IAI) methods have been developed to provide transparency into how models make decisions. This survey presents a thorough review of who, what, when, where, why, and how both IAI and XAI methods have been used in manufacturing. Due to the multidisciplinary nature of manufacturing, this work provides the results from a systematic literature review that surveyed papers from highly rated venues in multiple manufacturing and AI-related fields to give the reader a holistic view of the space. This survey is intended to help both individuals from academia and industry quickly understand the applications, areas of research, and future work involved with creating explainable industrial solutions.
doi_str_mv 10.1109/TII.2024.3361489
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2024_3361489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10449717</ieee_id><sourcerecordid>3052200939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-2b9104b8fa934467cad054073775999a5a1efd60e8b932ef8ca6642666fb7cff3</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWwMzBYYk55_s5jq6oCkYoYKLPlpHaVqjjFSSr670nVDkzvDufeJx1C7hlMGAN8WhbFhAOXEyE0kzlekBFDyTIABZdDVoplgoO4JjdtuwEQBgSOyPM00iJ2PqVm7bp67-lnn_b-QJtA57-7raujK7eeTgtaR_ruYh9c1fWpjutbchXctvV35zsmXy_z5ewtW3y8FrPpIqs48i7jJTKQZR4cCim1qdwKlAQjjFGI6JRjPqw0-LxEwX3IK6e15FrrUJoqBDEmj6fdXWp-et92dtP0KQ4vrQDFOQAKHCg4UVVq2jb5YHep_nbpYBnYoyE7GLJHQ_ZsaKg8nCq19_4fLiUaZsQfuw1gWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052200939</pqid></control><display><type>article</type><title>An Interrogative Survey of Explainable AI in Manufacturing</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Alexander, Zoe ; Chau, Duen Horng ; Saldana, Christopher</creator><creatorcontrib>Alexander, Zoe ; Chau, Duen Horng ; Saldana, Christopher</creatorcontrib><description>Artificial intelligence (AI) is a driving force behind Industry 4.0 in manufacturing. Specifically, machine learning has been applied to all parts of the manufacturing process: from product design optimization to anomaly detection for quality control. Explainable AI (XAI) and interpretable AI (IAI) methods have been developed to provide transparency into how models make decisions. This survey presents a thorough review of who, what, when, where, why, and how both IAI and XAI methods have been used in manufacturing. Due to the multidisciplinary nature of manufacturing, this work provides the results from a systematic literature review that surveyed papers from highly rated venues in multiple manufacturing and AI-related fields to give the reader a holistic view of the space. This survey is intended to help both individuals from academia and industry quickly understand the applications, areas of research, and future work involved with creating explainable industrial solutions.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3361489</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anomalies ; Artificial intelligence ; Artificial intelligence (AI) ; Biological system modeling ; Data models ; deep learning (DL) ; Design optimization ; Explainable artificial intelligence ; explainable artificial intelligence (XAI) ; human–computer interaction (HCI) ; Industries ; Industry 4.0 ; interpretable artificial intelligence (IAI) ; Literature reviews ; Machine learning ; machine learning (ML) ; Manufacturing ; Predictive models ; Product design ; Quality control ; Surveys</subject><ispartof>IEEE transactions on industrial informatics, 2024-05, Vol.20 (5), p.7069-7081</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-2b9104b8fa934467cad054073775999a5a1efd60e8b932ef8ca6642666fb7cff3</citedby><cites>FETCH-LOGICAL-c292t-2b9104b8fa934467cad054073775999a5a1efd60e8b932ef8ca6642666fb7cff3</cites><orcidid>0000-0003-1427-7732 ; 0000-0001-9824-3323 ; 0000-0001-8687-5649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10449717$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Alexander, Zoe</creatorcontrib><creatorcontrib>Chau, Duen Horng</creatorcontrib><creatorcontrib>Saldana, Christopher</creatorcontrib><title>An Interrogative Survey of Explainable AI in Manufacturing</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Artificial intelligence (AI) is a driving force behind Industry 4.0 in manufacturing. Specifically, machine learning has been applied to all parts of the manufacturing process: from product design optimization to anomaly detection for quality control. Explainable AI (XAI) and interpretable AI (IAI) methods have been developed to provide transparency into how models make decisions. This survey presents a thorough review of who, what, when, where, why, and how both IAI and XAI methods have been used in manufacturing. Due to the multidisciplinary nature of manufacturing, this work provides the results from a systematic literature review that surveyed papers from highly rated venues in multiple manufacturing and AI-related fields to give the reader a holistic view of the space. This survey is intended to help both individuals from academia and industry quickly understand the applications, areas of research, and future work involved with creating explainable industrial solutions.</description><subject>Anomalies</subject><subject>Artificial intelligence</subject><subject>Artificial intelligence (AI)</subject><subject>Biological system modeling</subject><subject>Data models</subject><subject>deep learning (DL)</subject><subject>Design optimization</subject><subject>Explainable artificial intelligence</subject><subject>explainable artificial intelligence (XAI)</subject><subject>human–computer interaction (HCI)</subject><subject>Industries</subject><subject>Industry 4.0</subject><subject>interpretable artificial intelligence (IAI)</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>Manufacturing</subject><subject>Predictive models</subject><subject>Product design</subject><subject>Quality control</subject><subject>Surveys</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAURS0EEqWwMzBYYk55_s5jq6oCkYoYKLPlpHaVqjjFSSr670nVDkzvDufeJx1C7hlMGAN8WhbFhAOXEyE0kzlekBFDyTIABZdDVoplgoO4JjdtuwEQBgSOyPM00iJ2PqVm7bp67-lnn_b-QJtA57-7raujK7eeTgtaR_ruYh9c1fWpjutbchXctvV35zsmXy_z5ewtW3y8FrPpIqs48i7jJTKQZR4cCim1qdwKlAQjjFGI6JRjPqw0-LxEwX3IK6e15FrrUJoqBDEmj6fdXWp-et92dtP0KQ4vrQDFOQAKHCg4UVVq2jb5YHep_nbpYBnYoyE7GLJHQ_ZsaKg8nCq19_4fLiUaZsQfuw1gWA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Alexander, Zoe</creator><creator>Chau, Duen Horng</creator><creator>Saldana, Christopher</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1427-7732</orcidid><orcidid>https://orcid.org/0000-0001-9824-3323</orcidid><orcidid>https://orcid.org/0000-0001-8687-5649</orcidid></search><sort><creationdate>20240501</creationdate><title>An Interrogative Survey of Explainable AI in Manufacturing</title><author>Alexander, Zoe ; Chau, Duen Horng ; Saldana, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-2b9104b8fa934467cad054073775999a5a1efd60e8b932ef8ca6642666fb7cff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomalies</topic><topic>Artificial intelligence</topic><topic>Artificial intelligence (AI)</topic><topic>Biological system modeling</topic><topic>Data models</topic><topic>deep learning (DL)</topic><topic>Design optimization</topic><topic>Explainable artificial intelligence</topic><topic>explainable artificial intelligence (XAI)</topic><topic>human–computer interaction (HCI)</topic><topic>Industries</topic><topic>Industry 4.0</topic><topic>interpretable artificial intelligence (IAI)</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>Manufacturing</topic><topic>Predictive models</topic><topic>Product design</topic><topic>Quality control</topic><topic>Surveys</topic><toplevel>online_resources</toplevel><creatorcontrib>Alexander, Zoe</creatorcontrib><creatorcontrib>Chau, Duen Horng</creatorcontrib><creatorcontrib>Saldana, Christopher</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexander, Zoe</au><au>Chau, Duen Horng</au><au>Saldana, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Interrogative Survey of Explainable AI in Manufacturing</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>20</volume><issue>5</issue><spage>7069</spage><epage>7081</epage><pages>7069-7081</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Artificial intelligence (AI) is a driving force behind Industry 4.0 in manufacturing. Specifically, machine learning has been applied to all parts of the manufacturing process: from product design optimization to anomaly detection for quality control. Explainable AI (XAI) and interpretable AI (IAI) methods have been developed to provide transparency into how models make decisions. This survey presents a thorough review of who, what, when, where, why, and how both IAI and XAI methods have been used in manufacturing. Due to the multidisciplinary nature of manufacturing, this work provides the results from a systematic literature review that surveyed papers from highly rated venues in multiple manufacturing and AI-related fields to give the reader a holistic view of the space. This survey is intended to help both individuals from academia and industry quickly understand the applications, areas of research, and future work involved with creating explainable industrial solutions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2024.3361489</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1427-7732</orcidid><orcidid>https://orcid.org/0000-0001-9824-3323</orcidid><orcidid>https://orcid.org/0000-0001-8687-5649</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2024-05, Vol.20 (5), p.7069-7081
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2024_3361489
source IEEE Electronic Library (IEL) Journals
subjects Anomalies
Artificial intelligence
Artificial intelligence (AI)
Biological system modeling
Data models
deep learning (DL)
Design optimization
Explainable artificial intelligence
explainable artificial intelligence (XAI)
human–computer interaction (HCI)
Industries
Industry 4.0
interpretable artificial intelligence (IAI)
Literature reviews
Machine learning
machine learning (ML)
Manufacturing
Predictive models
Product design
Quality control
Surveys
title An Interrogative Survey of Explainable AI in Manufacturing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Interrogative%20Survey%20of%20Explainable%20AI%20in%20Manufacturing&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Alexander,%20Zoe&rft.date=2024-05-01&rft.volume=20&rft.issue=5&rft.spage=7069&rft.epage=7081&rft.pages=7069-7081&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3361489&rft_dat=%3Cproquest_cross%3E3052200939%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-2b9104b8fa934467cad054073775999a5a1efd60e8b932ef8ca6642666fb7cff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3052200939&rft_id=info:pmid/&rft_ieee_id=10449717&rfr_iscdi=true