Loading…

DIR-BHRNet: A Lightweight Network for Real-Time Vision-Based Multiperson Pose Estimation on Smartphones

Human pose estimation (HPE), particularly multiperson pose estimation (MPPE), has been applied in many domains, such as human-machine systems. However, the current MPPE methods generally run on powerful GPU systems and take a lot of computational costs. Real-time MPPE on mobile devices with low-perf...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2024-11, Vol.20 (11), p.12533-12541
Main Authors: Lan, Gongjin, Wu, Yu, Hao, Qi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c147t-23333d6dd946655497fd0171654859f45250ce542e6a307ac3b5670edd5766953
container_end_page 12541
container_issue 11
container_start_page 12533
container_title IEEE transactions on industrial informatics
container_volume 20
creator Lan, Gongjin
Wu, Yu
Hao, Qi
description Human pose estimation (HPE), particularly multiperson pose estimation (MPPE), has been applied in many domains, such as human-machine systems. However, the current MPPE methods generally run on powerful GPU systems and take a lot of computational costs. Real-time MPPE on mobile devices with low-performance computing is a challenging task. In this article, we propose a lightweight neural network, DIR-BHRNet, for real-time MPPE on smartphones. In DIR-BHRNet, we design a novel lightweight convolutional module, dense inverted residual (DIR), to improve accuracy by adding a depthwise convolution and a shortcut connection into the well-known inverted residual, and a novel efficient neural network structure, balanced HRNet (BHRNet), to reduce computational costs by reconfiguring the proper number of convolutional blocks on each branch. We evaluate DIR-BHRNet on the well-known COCO and CrowdPose datasets. The results show that DIR-BHRNet outperforms the state-of-the-art methods in terms of accuracy with a real-time computational cost. Finally, we implement the DIR-BHRNet on the current mainstream Android smartphones, which perform more than 10 FPS. The free-used executable file (Android 10), source code, and a video description of this work are publicly available on the page 1 to facilitate the development of real-time MPPE on smartphones.
doi_str_mv 10.1109/TII.2024.3421511
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2024_3421511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10614865</ieee_id><sourcerecordid>10_1109_TII_2024_3421511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-23333d6dd946655497fd0171654859f45250ce542e6a307ac3b5670edd5766953</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYjePXjoHyhOt50u9QaIsgl-BNHrZt2dhSqwpF1D_PeWwMHJZGYyed_J5GHsWkJPSrC38yzrJZDontKJRClPWEdaLQUAwmmcEaVQCahzdhHCF4BKQdkOW9xnMzGczJ6pveMDPnWLZbujfeVxtWv8N68bz2dUrMTcrYl_uOCajRgWgSr-9LNq3ZZ8aDb8tQnEx6F166KNCh7zbV34drtsNhQu2VldrAJdHXuXvT-M56OJmL48ZqPBVJRSp61IVIzKVJXVxiBqm9YVyFQa1H20tcYEoSTUCZlCQVqU6hNNClRVmBpjUXUZHO6WvgnBU51vffzI_-YS8j2oPILK96DyI6houTlYHBH9kxup-wbVH-TbYxs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DIR-BHRNet: A Lightweight Network for Real-Time Vision-Based Multiperson Pose Estimation on Smartphones</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lan, Gongjin ; Wu, Yu ; Hao, Qi</creator><creatorcontrib>Lan, Gongjin ; Wu, Yu ; Hao, Qi</creatorcontrib><description>Human pose estimation (HPE), particularly multiperson pose estimation (MPPE), has been applied in many domains, such as human-machine systems. However, the current MPPE methods generally run on powerful GPU systems and take a lot of computational costs. Real-time MPPE on mobile devices with low-performance computing is a challenging task. In this article, we propose a lightweight neural network, DIR-BHRNet, for real-time MPPE on smartphones. In DIR-BHRNet, we design a novel lightweight convolutional module, dense inverted residual (DIR), to improve accuracy by adding a depthwise convolution and a shortcut connection into the well-known inverted residual, and a novel efficient neural network structure, balanced HRNet (BHRNet), to reduce computational costs by reconfiguring the proper number of convolutional blocks on each branch. We evaluate DIR-BHRNet on the well-known COCO and CrowdPose datasets. The results show that DIR-BHRNet outperforms the state-of-the-art methods in terms of accuracy with a real-time computational cost. Finally, we implement the DIR-BHRNet on the current mainstream Android smartphones, which perform more than 10 FPS. The free-used executable file (Android 10), source code, and a video description of this work are publicly available on the page 1 to facilitate the development of real-time MPPE on smartphones.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3421511</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational efficiency ; Computer architecture ; Convolution ; Deep learning ; Feature extraction ; human pose estimation (HPE) ; multiperson pose estimation (MPPE) ; Pose estimation ; real time ; Real-time systems ; Smart phones ; smartphones</subject><ispartof>IEEE transactions on industrial informatics, 2024-11, Vol.20 (11), p.12533-12541</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-23333d6dd946655497fd0171654859f45250ce542e6a307ac3b5670edd5766953</cites><orcidid>0009-0009-4754-0892 ; 0000-0002-2792-5965 ; 0000-0003-2020-8186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10614865$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lan, Gongjin</creatorcontrib><creatorcontrib>Wu, Yu</creatorcontrib><creatorcontrib>Hao, Qi</creatorcontrib><title>DIR-BHRNet: A Lightweight Network for Real-Time Vision-Based Multiperson Pose Estimation on Smartphones</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Human pose estimation (HPE), particularly multiperson pose estimation (MPPE), has been applied in many domains, such as human-machine systems. However, the current MPPE methods generally run on powerful GPU systems and take a lot of computational costs. Real-time MPPE on mobile devices with low-performance computing is a challenging task. In this article, we propose a lightweight neural network, DIR-BHRNet, for real-time MPPE on smartphones. In DIR-BHRNet, we design a novel lightweight convolutional module, dense inverted residual (DIR), to improve accuracy by adding a depthwise convolution and a shortcut connection into the well-known inverted residual, and a novel efficient neural network structure, balanced HRNet (BHRNet), to reduce computational costs by reconfiguring the proper number of convolutional blocks on each branch. We evaluate DIR-BHRNet on the well-known COCO and CrowdPose datasets. The results show that DIR-BHRNet outperforms the state-of-the-art methods in terms of accuracy with a real-time computational cost. Finally, we implement the DIR-BHRNet on the current mainstream Android smartphones, which perform more than 10 FPS. The free-used executable file (Android 10), source code, and a video description of this work are publicly available on the page 1 to facilitate the development of real-time MPPE on smartphones.</description><subject>Computational efficiency</subject><subject>Computer architecture</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>human pose estimation (HPE)</subject><subject>multiperson pose estimation (MPPE)</subject><subject>Pose estimation</subject><subject>real time</subject><subject>Real-time systems</subject><subject>Smart phones</subject><subject>smartphones</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PAjEQhhujiYjePXjoHyhOt50u9QaIsgl-BNHrZt2dhSqwpF1D_PeWwMHJZGYyed_J5GHsWkJPSrC38yzrJZDontKJRClPWEdaLQUAwmmcEaVQCahzdhHCF4BKQdkOW9xnMzGczJ6pveMDPnWLZbujfeVxtWv8N68bz2dUrMTcrYl_uOCajRgWgSr-9LNq3ZZ8aDb8tQnEx6F166KNCh7zbV34drtsNhQu2VldrAJdHXuXvT-M56OJmL48ZqPBVJRSp61IVIzKVJXVxiBqm9YVyFQa1H20tcYEoSTUCZlCQVqU6hNNClRVmBpjUXUZHO6WvgnBU51vffzI_-YS8j2oPILK96DyI6houTlYHBH9kxup-wbVH-TbYxs</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Lan, Gongjin</creator><creator>Wu, Yu</creator><creator>Hao, Qi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-4754-0892</orcidid><orcidid>https://orcid.org/0000-0002-2792-5965</orcidid><orcidid>https://orcid.org/0000-0003-2020-8186</orcidid></search><sort><creationdate>202411</creationdate><title>DIR-BHRNet: A Lightweight Network for Real-Time Vision-Based Multiperson Pose Estimation on Smartphones</title><author>Lan, Gongjin ; Wu, Yu ; Hao, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-23333d6dd946655497fd0171654859f45250ce542e6a307ac3b5670edd5766953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational efficiency</topic><topic>Computer architecture</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>human pose estimation (HPE)</topic><topic>multiperson pose estimation (MPPE)</topic><topic>Pose estimation</topic><topic>real time</topic><topic>Real-time systems</topic><topic>Smart phones</topic><topic>smartphones</topic><toplevel>online_resources</toplevel><creatorcontrib>Lan, Gongjin</creatorcontrib><creatorcontrib>Wu, Yu</creatorcontrib><creatorcontrib>Hao, Qi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Gongjin</au><au>Wu, Yu</au><au>Hao, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DIR-BHRNet: A Lightweight Network for Real-Time Vision-Based Multiperson Pose Estimation on Smartphones</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-11</date><risdate>2024</risdate><volume>20</volume><issue>11</issue><spage>12533</spage><epage>12541</epage><pages>12533-12541</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Human pose estimation (HPE), particularly multiperson pose estimation (MPPE), has been applied in many domains, such as human-machine systems. However, the current MPPE methods generally run on powerful GPU systems and take a lot of computational costs. Real-time MPPE on mobile devices with low-performance computing is a challenging task. In this article, we propose a lightweight neural network, DIR-BHRNet, for real-time MPPE on smartphones. In DIR-BHRNet, we design a novel lightweight convolutional module, dense inverted residual (DIR), to improve accuracy by adding a depthwise convolution and a shortcut connection into the well-known inverted residual, and a novel efficient neural network structure, balanced HRNet (BHRNet), to reduce computational costs by reconfiguring the proper number of convolutional blocks on each branch. We evaluate DIR-BHRNet on the well-known COCO and CrowdPose datasets. The results show that DIR-BHRNet outperforms the state-of-the-art methods in terms of accuracy with a real-time computational cost. Finally, we implement the DIR-BHRNet on the current mainstream Android smartphones, which perform more than 10 FPS. The free-used executable file (Android 10), source code, and a video description of this work are publicly available on the page 1 to facilitate the development of real-time MPPE on smartphones.</abstract><pub>IEEE</pub><doi>10.1109/TII.2024.3421511</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0009-4754-0892</orcidid><orcidid>https://orcid.org/0000-0002-2792-5965</orcidid><orcidid>https://orcid.org/0000-0003-2020-8186</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2024-11, Vol.20 (11), p.12533-12541
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2024_3421511
source IEEE Electronic Library (IEL) Journals
subjects Computational efficiency
Computer architecture
Convolution
Deep learning
Feature extraction
human pose estimation (HPE)
multiperson pose estimation (MPPE)
Pose estimation
real time
Real-time systems
Smart phones
smartphones
title DIR-BHRNet: A Lightweight Network for Real-Time Vision-Based Multiperson Pose Estimation on Smartphones
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DIR-BHRNet:%20A%20Lightweight%20Network%20for%20Real-Time%20Vision-Based%20Multiperson%20Pose%20Estimation%20on%20Smartphones&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Lan,%20Gongjin&rft.date=2024-11&rft.volume=20&rft.issue=11&rft.spage=12533&rft.epage=12541&rft.pages=12533-12541&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3421511&rft_dat=%3Ccrossref_ieee_%3E10_1109_TII_2024_3421511%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c147t-23333d6dd946655497fd0171654859f45250ce542e6a307ac3b5670edd5766953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10614865&rfr_iscdi=true