Loading…
Batch Iterative Dual Optimization for Collision-Free Robot Motion Generation
Collision-free robot motion planning is crucial in robotic applications. Traditional sampling-based methods struggle with kinematic/dynamic constraints and intermediate process constraints, limiting their use to point-to-point motion generation. Optimization-based methods, such as sequential convex...
Saved in:
Published in: | IEEE transactions on industrial informatics 2025-01, p.1-9 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 9 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on industrial informatics |
container_volume | |
creator | Lin, Shize Hu, Chuxiong Yu, Jichuan Liang, Yixuan |
description | Collision-free robot motion planning is crucial in robotic applications. Traditional sampling-based methods struggle with kinematic/dynamic constraints and intermediate process constraints, limiting their use to point-to-point motion generation. Optimization-based methods, such as sequential convex programming, often face issues of artificial feasibility and soft failure. To enhance both the success rate and quality of robot motion generation, this article presents a novel iterative motion planning framework grounded in a dual collision constraint formulation. A smooth and differentiable continuous collision detection method is developed based on the strong duality of convex body collision constraints. Building on this, trajectory optimization problem is simplified and an iterative algorithm is designed for collision information updating and batch gradient descent. Simulation and physical experimental results demonstrate that the proposed method performs excellently in both free-space point-to-point motion tasks and continuous task-space tracking trajectory generation with comparison to multiple classical methods, suggesting its promising applications in various robotic automation scenarios. |
doi_str_mv | 10.1109/TII.2024.3507955 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2024_3507955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10818988</ieee_id><sourcerecordid>10_1109_TII_2024_3507955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-fb361d5bcd555d0a9dbfc6890f64da29f894640a1e1e22397e2072ecea3a4a3</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEmNw58Ahf6DD-WqbIxQ2KhVNgt2jNHVEUddMaUGCX0_3ceBk-7UfHx5CbhksGAN9vynLBQcuF0JBppU6IzOmJUsAFJxPvVIsERzEJbkahk8AkYHQM1I92tF90HLEaMf2G-nTl-3oeje22_Z3SkJPfYi0CF3XDtOULCMifQt1GOlrOOxX2B_g0F-TC2-7AW9OdU7el8-b4iWp1quyeKgSx2Q2Jr4WKWtU7RqlVANWN7V3aa7Bp7KxXPtcy1SCZciQc6Ez5JBxdGiFlVbMCRy_uhiGIaI3u9hubfwxDMzehZlcmL0Lc3IxIXdHpEXEf-c5y3Weiz9axVun</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Batch Iterative Dual Optimization for Collision-Free Robot Motion Generation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lin, Shize ; Hu, Chuxiong ; Yu, Jichuan ; Liang, Yixuan</creator><creatorcontrib>Lin, Shize ; Hu, Chuxiong ; Yu, Jichuan ; Liang, Yixuan</creatorcontrib><description>Collision-free robot motion planning is crucial in robotic applications. Traditional sampling-based methods struggle with kinematic/dynamic constraints and intermediate process constraints, limiting their use to point-to-point motion generation. Optimization-based methods, such as sequential convex programming, often face issues of artificial feasibility and soft failure. To enhance both the success rate and quality of robot motion generation, this article presents a novel iterative motion planning framework grounded in a dual collision constraint formulation. A smooth and differentiable continuous collision detection method is developed based on the strong duality of convex body collision constraints. Building on this, trajectory optimization problem is simplified and an iterative algorithm is designed for collision information updating and batch gradient descent. Simulation and physical experimental results demonstrate that the proposed method performs excellently in both free-space point-to-point motion tasks and continuous task-space tracking trajectory generation with comparison to multiple classical methods, suggesting its promising applications in various robotic automation scenarios.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3507955</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Batch iterative dual optimization (BIDopt) ; Charge coupled devices ; Collision avoidance ; continuous collision detection (CCD) ; Convergence ; Informatics ; Iterative methods ; Planning ; Robot motion ; robot motion planning ; Robots ; Service robots ; Trajectory optimization</subject><ispartof>IEEE transactions on industrial informatics, 2025-01, p.1-9</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3504-3065 ; 0000-0002-4043-2268 ; 0000-0002-2424-8129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10818988$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Lin, Shize</creatorcontrib><creatorcontrib>Hu, Chuxiong</creatorcontrib><creatorcontrib>Yu, Jichuan</creatorcontrib><creatorcontrib>Liang, Yixuan</creatorcontrib><title>Batch Iterative Dual Optimization for Collision-Free Robot Motion Generation</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Collision-free robot motion planning is crucial in robotic applications. Traditional sampling-based methods struggle with kinematic/dynamic constraints and intermediate process constraints, limiting their use to point-to-point motion generation. Optimization-based methods, such as sequential convex programming, often face issues of artificial feasibility and soft failure. To enhance both the success rate and quality of robot motion generation, this article presents a novel iterative motion planning framework grounded in a dual collision constraint formulation. A smooth and differentiable continuous collision detection method is developed based on the strong duality of convex body collision constraints. Building on this, trajectory optimization problem is simplified and an iterative algorithm is designed for collision information updating and batch gradient descent. Simulation and physical experimental results demonstrate that the proposed method performs excellently in both free-space point-to-point motion tasks and continuous task-space tracking trajectory generation with comparison to multiple classical methods, suggesting its promising applications in various robotic automation scenarios.</description><subject>Batch iterative dual optimization (BIDopt)</subject><subject>Charge coupled devices</subject><subject>Collision avoidance</subject><subject>continuous collision detection (CCD)</subject><subject>Convergence</subject><subject>Informatics</subject><subject>Iterative methods</subject><subject>Planning</subject><subject>Robot motion</subject><subject>robot motion planning</subject><subject>Robots</subject><subject>Service robots</subject><subject>Trajectory optimization</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwzAMhiMEEmNw58Ahf6DD-WqbIxQ2KhVNgt2jNHVEUddMaUGCX0_3ceBk-7UfHx5CbhksGAN9vynLBQcuF0JBppU6IzOmJUsAFJxPvVIsERzEJbkahk8AkYHQM1I92tF90HLEaMf2G-nTl-3oeje22_Z3SkJPfYi0CF3XDtOULCMifQt1GOlrOOxX2B_g0F-TC2-7AW9OdU7el8-b4iWp1quyeKgSx2Q2Jr4WKWtU7RqlVANWN7V3aa7Bp7KxXPtcy1SCZciQc6Ez5JBxdGiFlVbMCRy_uhiGIaI3u9hubfwxDMzehZlcmL0Lc3IxIXdHpEXEf-c5y3Weiz9axVun</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Lin, Shize</creator><creator>Hu, Chuxiong</creator><creator>Yu, Jichuan</creator><creator>Liang, Yixuan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3504-3065</orcidid><orcidid>https://orcid.org/0000-0002-4043-2268</orcidid><orcidid>https://orcid.org/0000-0002-2424-8129</orcidid></search><sort><creationdate>20250101</creationdate><title>Batch Iterative Dual Optimization for Collision-Free Robot Motion Generation</title><author>Lin, Shize ; Hu, Chuxiong ; Yu, Jichuan ; Liang, Yixuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-fb361d5bcd555d0a9dbfc6890f64da29f894640a1e1e22397e2072ecea3a4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Batch iterative dual optimization (BIDopt)</topic><topic>Charge coupled devices</topic><topic>Collision avoidance</topic><topic>continuous collision detection (CCD)</topic><topic>Convergence</topic><topic>Informatics</topic><topic>Iterative methods</topic><topic>Planning</topic><topic>Robot motion</topic><topic>robot motion planning</topic><topic>Robots</topic><topic>Service robots</topic><topic>Trajectory optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Shize</creatorcontrib><creatorcontrib>Hu, Chuxiong</creatorcontrib><creatorcontrib>Yu, Jichuan</creatorcontrib><creatorcontrib>Liang, Yixuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Shize</au><au>Hu, Chuxiong</au><au>Yu, Jichuan</au><au>Liang, Yixuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Batch Iterative Dual Optimization for Collision-Free Robot Motion Generation</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2025-01-01</date><risdate>2025</risdate><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Collision-free robot motion planning is crucial in robotic applications. Traditional sampling-based methods struggle with kinematic/dynamic constraints and intermediate process constraints, limiting their use to point-to-point motion generation. Optimization-based methods, such as sequential convex programming, often face issues of artificial feasibility and soft failure. To enhance both the success rate and quality of robot motion generation, this article presents a novel iterative motion planning framework grounded in a dual collision constraint formulation. A smooth and differentiable continuous collision detection method is developed based on the strong duality of convex body collision constraints. Building on this, trajectory optimization problem is simplified and an iterative algorithm is designed for collision information updating and batch gradient descent. Simulation and physical experimental results demonstrate that the proposed method performs excellently in both free-space point-to-point motion tasks and continuous task-space tracking trajectory generation with comparison to multiple classical methods, suggesting its promising applications in various robotic automation scenarios.</abstract><pub>IEEE</pub><doi>10.1109/TII.2024.3507955</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3504-3065</orcidid><orcidid>https://orcid.org/0000-0002-4043-2268</orcidid><orcidid>https://orcid.org/0000-0002-2424-8129</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2025-01, p.1-9 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TII_2024_3507955 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Batch iterative dual optimization (BIDopt) Charge coupled devices Collision avoidance continuous collision detection (CCD) Convergence Informatics Iterative methods Planning Robot motion robot motion planning Robots Service robots Trajectory optimization |
title | Batch Iterative Dual Optimization for Collision-Free Robot Motion Generation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T02%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Batch%20Iterative%20Dual%20Optimization%20for%20Collision-Free%20Robot%20Motion%20Generation&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Lin,%20Shize&rft.date=2025-01-01&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3507955&rft_dat=%3Ccrossref_ieee_%3E10_1109_TII_2024_3507955%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c147t-fb361d5bcd555d0a9dbfc6890f64da29f894640a1e1e22397e2072ecea3a4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10818988&rfr_iscdi=true |