Loading…

Batch Iterative Dual Optimization for Collision-Free Robot Motion Generation

Collision-free robot motion planning is crucial in robotic applications. Traditional sampling-based methods struggle with kinematic/dynamic constraints and intermediate process constraints, limiting their use to point-to-point motion generation. Optimization-based methods, such as sequential convex...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2025-01, p.1-9
Main Authors: Lin, Shize, Hu, Chuxiong, Yu, Jichuan, Liang, Yixuan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 9
container_issue
container_start_page 1
container_title IEEE transactions on industrial informatics
container_volume
creator Lin, Shize
Hu, Chuxiong
Yu, Jichuan
Liang, Yixuan
description Collision-free robot motion planning is crucial in robotic applications. Traditional sampling-based methods struggle with kinematic/dynamic constraints and intermediate process constraints, limiting their use to point-to-point motion generation. Optimization-based methods, such as sequential convex programming, often face issues of artificial feasibility and soft failure. To enhance both the success rate and quality of robot motion generation, this article presents a novel iterative motion planning framework grounded in a dual collision constraint formulation. A smooth and differentiable continuous collision detection method is developed based on the strong duality of convex body collision constraints. Building on this, trajectory optimization problem is simplified and an iterative algorithm is designed for collision information updating and batch gradient descent. Simulation and physical experimental results demonstrate that the proposed method performs excellently in both free-space point-to-point motion tasks and continuous task-space tracking trajectory generation with comparison to multiple classical methods, suggesting its promising applications in various robotic automation scenarios.
doi_str_mv 10.1109/TII.2024.3507955
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TII_2024_3507955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10818988</ieee_id><sourcerecordid>10_1109_TII_2024_3507955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-fb361d5bcd555d0a9dbfc6890f64da29f894640a1e1e22397e2072ecea3a4a3</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEmNw58Ahf6DD-WqbIxQ2KhVNgt2jNHVEUddMaUGCX0_3ceBk-7UfHx5CbhksGAN9vynLBQcuF0JBppU6IzOmJUsAFJxPvVIsERzEJbkahk8AkYHQM1I92tF90HLEaMf2G-nTl-3oeje22_Z3SkJPfYi0CF3XDtOULCMifQt1GOlrOOxX2B_g0F-TC2-7AW9OdU7el8-b4iWp1quyeKgSx2Q2Jr4WKWtU7RqlVANWN7V3aa7Bp7KxXPtcy1SCZciQc6Ez5JBxdGiFlVbMCRy_uhiGIaI3u9hubfwxDMzehZlcmL0Lc3IxIXdHpEXEf-c5y3Weiz9axVun</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Batch Iterative Dual Optimization for Collision-Free Robot Motion Generation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lin, Shize ; Hu, Chuxiong ; Yu, Jichuan ; Liang, Yixuan</creator><creatorcontrib>Lin, Shize ; Hu, Chuxiong ; Yu, Jichuan ; Liang, Yixuan</creatorcontrib><description>Collision-free robot motion planning is crucial in robotic applications. Traditional sampling-based methods struggle with kinematic/dynamic constraints and intermediate process constraints, limiting their use to point-to-point motion generation. Optimization-based methods, such as sequential convex programming, often face issues of artificial feasibility and soft failure. To enhance both the success rate and quality of robot motion generation, this article presents a novel iterative motion planning framework grounded in a dual collision constraint formulation. A smooth and differentiable continuous collision detection method is developed based on the strong duality of convex body collision constraints. Building on this, trajectory optimization problem is simplified and an iterative algorithm is designed for collision information updating and batch gradient descent. Simulation and physical experimental results demonstrate that the proposed method performs excellently in both free-space point-to-point motion tasks and continuous task-space tracking trajectory generation with comparison to multiple classical methods, suggesting its promising applications in various robotic automation scenarios.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3507955</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Batch iterative dual optimization (BIDopt) ; Charge coupled devices ; Collision avoidance ; continuous collision detection (CCD) ; Convergence ; Informatics ; Iterative methods ; Planning ; Robot motion ; robot motion planning ; Robots ; Service robots ; Trajectory optimization</subject><ispartof>IEEE transactions on industrial informatics, 2025-01, p.1-9</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3504-3065 ; 0000-0002-4043-2268 ; 0000-0002-2424-8129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10818988$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Lin, Shize</creatorcontrib><creatorcontrib>Hu, Chuxiong</creatorcontrib><creatorcontrib>Yu, Jichuan</creatorcontrib><creatorcontrib>Liang, Yixuan</creatorcontrib><title>Batch Iterative Dual Optimization for Collision-Free Robot Motion Generation</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Collision-free robot motion planning is crucial in robotic applications. Traditional sampling-based methods struggle with kinematic/dynamic constraints and intermediate process constraints, limiting their use to point-to-point motion generation. Optimization-based methods, such as sequential convex programming, often face issues of artificial feasibility and soft failure. To enhance both the success rate and quality of robot motion generation, this article presents a novel iterative motion planning framework grounded in a dual collision constraint formulation. A smooth and differentiable continuous collision detection method is developed based on the strong duality of convex body collision constraints. Building on this, trajectory optimization problem is simplified and an iterative algorithm is designed for collision information updating and batch gradient descent. Simulation and physical experimental results demonstrate that the proposed method performs excellently in both free-space point-to-point motion tasks and continuous task-space tracking trajectory generation with comparison to multiple classical methods, suggesting its promising applications in various robotic automation scenarios.</description><subject>Batch iterative dual optimization (BIDopt)</subject><subject>Charge coupled devices</subject><subject>Collision avoidance</subject><subject>continuous collision detection (CCD)</subject><subject>Convergence</subject><subject>Informatics</subject><subject>Iterative methods</subject><subject>Planning</subject><subject>Robot motion</subject><subject>robot motion planning</subject><subject>Robots</subject><subject>Service robots</subject><subject>Trajectory optimization</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwzAMhiMEEmNw58Ahf6DD-WqbIxQ2KhVNgt2jNHVEUddMaUGCX0_3ceBk-7UfHx5CbhksGAN9vynLBQcuF0JBppU6IzOmJUsAFJxPvVIsERzEJbkahk8AkYHQM1I92tF90HLEaMf2G-nTl-3oeje22_Z3SkJPfYi0CF3XDtOULCMifQt1GOlrOOxX2B_g0F-TC2-7AW9OdU7el8-b4iWp1quyeKgSx2Q2Jr4WKWtU7RqlVANWN7V3aa7Bp7KxXPtcy1SCZciQc6Ez5JBxdGiFlVbMCRy_uhiGIaI3u9hubfwxDMzehZlcmL0Lc3IxIXdHpEXEf-c5y3Weiz9axVun</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Lin, Shize</creator><creator>Hu, Chuxiong</creator><creator>Yu, Jichuan</creator><creator>Liang, Yixuan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3504-3065</orcidid><orcidid>https://orcid.org/0000-0002-4043-2268</orcidid><orcidid>https://orcid.org/0000-0002-2424-8129</orcidid></search><sort><creationdate>20250101</creationdate><title>Batch Iterative Dual Optimization for Collision-Free Robot Motion Generation</title><author>Lin, Shize ; Hu, Chuxiong ; Yu, Jichuan ; Liang, Yixuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-fb361d5bcd555d0a9dbfc6890f64da29f894640a1e1e22397e2072ecea3a4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Batch iterative dual optimization (BIDopt)</topic><topic>Charge coupled devices</topic><topic>Collision avoidance</topic><topic>continuous collision detection (CCD)</topic><topic>Convergence</topic><topic>Informatics</topic><topic>Iterative methods</topic><topic>Planning</topic><topic>Robot motion</topic><topic>robot motion planning</topic><topic>Robots</topic><topic>Service robots</topic><topic>Trajectory optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Shize</creatorcontrib><creatorcontrib>Hu, Chuxiong</creatorcontrib><creatorcontrib>Yu, Jichuan</creatorcontrib><creatorcontrib>Liang, Yixuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Shize</au><au>Hu, Chuxiong</au><au>Yu, Jichuan</au><au>Liang, Yixuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Batch Iterative Dual Optimization for Collision-Free Robot Motion Generation</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2025-01-01</date><risdate>2025</risdate><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Collision-free robot motion planning is crucial in robotic applications. Traditional sampling-based methods struggle with kinematic/dynamic constraints and intermediate process constraints, limiting their use to point-to-point motion generation. Optimization-based methods, such as sequential convex programming, often face issues of artificial feasibility and soft failure. To enhance both the success rate and quality of robot motion generation, this article presents a novel iterative motion planning framework grounded in a dual collision constraint formulation. A smooth and differentiable continuous collision detection method is developed based on the strong duality of convex body collision constraints. Building on this, trajectory optimization problem is simplified and an iterative algorithm is designed for collision information updating and batch gradient descent. Simulation and physical experimental results demonstrate that the proposed method performs excellently in both free-space point-to-point motion tasks and continuous task-space tracking trajectory generation with comparison to multiple classical methods, suggesting its promising applications in various robotic automation scenarios.</abstract><pub>IEEE</pub><doi>10.1109/TII.2024.3507955</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3504-3065</orcidid><orcidid>https://orcid.org/0000-0002-4043-2268</orcidid><orcidid>https://orcid.org/0000-0002-2424-8129</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2025-01, p.1-9
issn 1551-3203
1941-0050
language eng
recordid cdi_crossref_primary_10_1109_TII_2024_3507955
source IEEE Electronic Library (IEL) Journals
subjects Batch iterative dual optimization (BIDopt)
Charge coupled devices
Collision avoidance
continuous collision detection (CCD)
Convergence
Informatics
Iterative methods
Planning
Robot motion
robot motion planning
Robots
Service robots
Trajectory optimization
title Batch Iterative Dual Optimization for Collision-Free Robot Motion Generation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T02%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Batch%20Iterative%20Dual%20Optimization%20for%20Collision-Free%20Robot%20Motion%20Generation&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Lin,%20Shize&rft.date=2025-01-01&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3507955&rft_dat=%3Ccrossref_ieee_%3E10_1109_TII_2024_3507955%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c147t-fb361d5bcd555d0a9dbfc6890f64da29f894640a1e1e22397e2072ecea3a4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10818988&rfr_iscdi=true