Loading…
Particle-Filtering-Based Prognosis Framework for Energy Storage Devices With a Statistical Characterization of State-of-Health Regeneration Phenomena
This paper presents the implementation of a particle-filtering-based prognostic framework that allows estimating the state of health (SOH) and predicting the remaining useful life (RUL) of energy storage devices, and more specifically lithium-ion batteries, while simultaneously detecting and isolati...
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 2013-02, Vol.62 (2), p.364-376 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents the implementation of a particle-filtering-based prognostic framework that allows estimating the state of health (SOH) and predicting the remaining useful life (RUL) of energy storage devices, and more specifically lithium-ion batteries, while simultaneously detecting and isolating the effect of self-recharge phenomena within the life-cycle model. The proposed scheme and the statistical characterization of capacity regeneration phenomena are validated through experimental data from an accelerated battery degradation test and a set of ad hoc performance measures to quantify the precision and accuracy of the RUL estimates. In addition, a simplified degradation model is presented to analyze and compare the performance of the proposed approach in the case where the optimal solution (in the mean-square-error sense) can be found analytically. |
---|---|
ISSN: | 0018-9456 1557-9662 |
DOI: | 10.1109/TIM.2012.2215142 |