Loading…
Noncontact Distance and Amplitude-Independent Vibration Measurement Based on an Extended DACM Algorithm
Utilizing microwave continuous-wave Doppler radars to wirelessly detect mechanical vibrations have been attracting more and more interests in recent years. In this paper, aiming to solve the null point and nonlinear issues in small-angle approximation-based Doppler radar sensors and eliminate the co...
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 2014-01, Vol.63 (1), p.145-153 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Utilizing microwave continuous-wave Doppler radars to wirelessly detect mechanical vibrations have been attracting more and more interests in recent years. In this paper, aiming to solve the null point and nonlinear issues in small-angle approximation-based Doppler radar sensors and eliminate the codomain restriction in the arctangent demodulation approach, we propose and investigate an extended differentiate and cross-multiply (DACM) algorithm. With an additional accumulator, the noise performance of the original DACM algorithm is improved. Moreover, the amplitude information of the vibration can be directly retrieved from accumulation without involving any distance-dependent issue. Experimental validations show that the proposed algorithm can fully recover the vibration patterns with the measured noncalibrated amplitude agreeing well with the known precalibrated data. Application examples of mechanical fault detection and human vital sign detection are demonstrated, showing a wide range of potential applications of this algorithm. |
---|---|
ISSN: | 0018-9456 1557-9662 |
DOI: | 10.1109/TIM.2013.2277530 |