Loading…

A White Rabbit-Synchronized Accurate Time-Stamping Solution for the Small-Sized Cameras of the Cherenkov Telescope Array

This article presents the Zynq-embedded node for the Cherenkov telescope array (ZEN-CTA) node, a programmable system-on-chip (SoC) with White Rabbit (WR)-synchronization capability. It targets a solution for the uniform clock and trigger time-stamping module of the small-sized telescopes in the CTA....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-14
Main Authors: Sanchez-Garrido, Jorge, Jurado, Antonio, Jimenez-Lopez, Miguel, Balzer, Arnim, Prokoph, Heike, Stephan, Maurice, Berge, David, Rodriguez-Alvarez, Manuel, Diaz, Javier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents the Zynq-embedded node for the Cherenkov telescope array (ZEN-CTA) node, a programmable system-on-chip (SoC) with White Rabbit (WR)-synchronization capability. It targets a solution for the uniform clock and trigger time-stamping module of the small-sized telescopes in the CTA. This module is tasked as a distributed acquisition device with a focus on obtaining time stamps for candidate Cherenkov events, which could be generated at potentially high rates from very-high-energy gamma rays and their subsequent distribution over Ethernet. In this context, the customized design of the ZEN-CTA node is examined thoroughly, including its generic implementation aspects and its main functional blocks. The design of the WR-assisted time-to-digital converters (TDCs) for time-stamping analog triggers is presented in detail alongside the implementation of an upgraded high-speed data path (1 Gb/s) for the WR-compatible Ethernet interfaces of the node. The new data path will feature a direct memory access engine for direct software transmissions and a hardware description language (HDL) coprocessor for high-speed forwarding. Next, the time-stamping accuracy of the WR-enhanced TDCs will be characterized alongside the forwarding efficiency of the new data path. Finally, conclusions are drawn, and the main contributions of this research are enumerated, a potential deployment within the CTA infrastructure to support the acquisition of Cherenkov light is considered, and additional use cases are mentioned.
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2020.3013343