Loading…

A Double-Square-Based Electrode Sequence Learning Method for Odor Concentration Identification Using EEG Signals

The aim of this study is to improve the recognition performance of olfactory electroencephalogram (EEG) signals induced by different odor concentrations, which is a new challenge in the field of olfactory EEG research. To do this, a novel double-square-based electrode sequence (DSES) learning method...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-10
Main Authors: Hou, Hui-Rang, Meng, Qing-Hao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-2162133ec5eb33f5f11e87221ab42969dc95459625108c009de0b91ac6c35d693
cites cdi_FETCH-LOGICAL-c361t-2162133ec5eb33f5f11e87221ab42969dc95459625108c009de0b91ac6c35d693
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 70
creator Hou, Hui-Rang
Meng, Qing-Hao
description The aim of this study is to improve the recognition performance of olfactory electroencephalogram (EEG) signals induced by different odor concentrations, which is a new challenge in the field of olfactory EEG research. To do this, a novel double-square-based electrode sequence (DSES) learning method is elaborately proposed. First, two square-based feature sets, each with N levels, are constructed based on N power-spectral-density (PSD) features extracted from N EEG electrodes. Subsequently, the electrode sequence (ES) codes are obtained by arranging the N feature values of each level of each square feature set in ascending order. Finally, inspired by the k -nearest neighbor ( k -NN), a minimum inconsistency classification is presented to find the odor concentration class whose ES codes are the least inconsistent with those of the testing sample. In the experiment, rose and rotten odors, each with five concentrations, were used to induce olfactory EEG signals on 13 participants. Experimental results reveal that, using the proposed DSES method, considerably high classification accuracies of 94.2% and 92.9% on five different concentrations of the rose and rotten odors were obtained, respectively, significantly outperforming ten other methods. These results verify the superiority of the proposed DSES method in identifying different odor concentrations. In addition, the EEG dataset with 4550 samples is made public through the website presented in this study. In this way, the proposed DSES method combined with the published EEG dataset may further promote the development of olfactory EEG recognition research.
doi_str_mv 10.1109/TIM.2021.3090177
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2021_3090177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9458278</ieee_id><sourcerecordid>2544948424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-2162133ec5eb33f5f11e87221ab42969dc95459625108c009de0b91ac6c35d693</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExG9m3jZxHNxv9s9IlYkgXAAzpvtdool2IVtOfjv3abEy3xk3ncy8yD0TMmEUqLftovVhBFGJ5xoQtP0Bo2olGmilWK3aEQIzRItpLpHD217IISkSqQjdJriD38pjpBszhcbIHm3LZQ4P4Lrgi8Bb-B8gcYBXoINTd3s8Qq6b1_iyge8LmOY-ThuumC72jd4Uca6rmo3tLu2t-T5HG_qfWOP7SO6q2KCp2seo91nvp19Jcv1fDGbLhPHFe0SRhWjnIOTUHBeyYpSyFLGqC0E00qXTkshtWKSkswRoksghabWKcdlqTQfo9dh7yn4-EHbmYO_hP4Cw6QQWmSCiagig8oF37YBKnMK9Y8Nv4YS03M1kavpuZor12h5GSw1APzLI9qMpRn_AwZpcuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544948424</pqid></control><display><type>article</type><title>A Double-Square-Based Electrode Sequence Learning Method for Odor Concentration Identification Using EEG Signals</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hou, Hui-Rang ; Meng, Qing-Hao</creator><creatorcontrib>Hou, Hui-Rang ; Meng, Qing-Hao</creatorcontrib><description><![CDATA[The aim of this study is to improve the recognition performance of olfactory electroencephalogram (EEG) signals induced by different odor concentrations, which is a new challenge in the field of olfactory EEG research. To do this, a novel double-square-based electrode sequence (DSES) learning method is elaborately proposed. First, two square-based feature sets, each with <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> levels, are constructed based on <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> power-spectral-density (PSD) features extracted from <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> EEG electrodes. Subsequently, the electrode sequence (ES) codes are obtained by arranging the <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> feature values of each level of each square feature set in ascending order. Finally, inspired by the <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-nearest neighbor (<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-NN), a minimum inconsistency classification is presented to find the odor concentration class whose ES codes are the least inconsistent with those of the testing sample. In the experiment, rose and rotten odors, each with five concentrations, were used to induce olfactory EEG signals on 13 participants. Experimental results reveal that, using the proposed DSES method, considerably high classification accuracies of 94.2% and 92.9% on five different concentrations of the rose and rotten odors were obtained, respectively, significantly outperforming ten other methods. These results verify the superiority of the proposed DSES method in identifying different odor concentrations. In addition, the EEG dataset with 4550 samples is made public through the website presented in this study. In this way, the proposed DSES method combined with the published EEG dataset may further promote the development of olfactory EEG recognition research.]]></description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2021.3090177</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological signal processing ; Classification ; Datasets ; double-square-based electrode sequence (DSES) learning method ; Electrodes ; Electroencephalography ; Feature extraction ; Learning ; Learning systems ; odor concentration stimulation ; Odors ; Olfactory ; olfactory electroencephalogram (EEG) ; power-spectral-density (PSD) feature ; Recognition ; Signal processing ; Signal processing algorithms ; Teaching methods ; Websites</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-2162133ec5eb33f5f11e87221ab42969dc95459625108c009de0b91ac6c35d693</citedby><cites>FETCH-LOGICAL-c361t-2162133ec5eb33f5f11e87221ab42969dc95459625108c009de0b91ac6c35d693</cites><orcidid>0000-0002-4608-273X ; 0000-0002-9915-7088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9458278$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hou, Hui-Rang</creatorcontrib><creatorcontrib>Meng, Qing-Hao</creatorcontrib><title>A Double-Square-Based Electrode Sequence Learning Method for Odor Concentration Identification Using EEG Signals</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description><![CDATA[The aim of this study is to improve the recognition performance of olfactory electroencephalogram (EEG) signals induced by different odor concentrations, which is a new challenge in the field of olfactory EEG research. To do this, a novel double-square-based electrode sequence (DSES) learning method is elaborately proposed. First, two square-based feature sets, each with <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> levels, are constructed based on <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> power-spectral-density (PSD) features extracted from <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> EEG electrodes. Subsequently, the electrode sequence (ES) codes are obtained by arranging the <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> feature values of each level of each square feature set in ascending order. Finally, inspired by the <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-nearest neighbor (<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-NN), a minimum inconsistency classification is presented to find the odor concentration class whose ES codes are the least inconsistent with those of the testing sample. In the experiment, rose and rotten odors, each with five concentrations, were used to induce olfactory EEG signals on 13 participants. Experimental results reveal that, using the proposed DSES method, considerably high classification accuracies of 94.2% and 92.9% on five different concentrations of the rose and rotten odors were obtained, respectively, significantly outperforming ten other methods. These results verify the superiority of the proposed DSES method in identifying different odor concentrations. In addition, the EEG dataset with 4550 samples is made public through the website presented in this study. In this way, the proposed DSES method combined with the published EEG dataset may further promote the development of olfactory EEG recognition research.]]></description><subject>Biological signal processing</subject><subject>Classification</subject><subject>Datasets</subject><subject>double-square-based electrode sequence (DSES) learning method</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Learning</subject><subject>Learning systems</subject><subject>odor concentration stimulation</subject><subject>Odors</subject><subject>Olfactory</subject><subject>olfactory electroencephalogram (EEG)</subject><subject>power-spectral-density (PSD) feature</subject><subject>Recognition</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Teaching methods</subject><subject>Websites</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwkAQhjdGExG9m3jZxHNxv9s9IlYkgXAAzpvtdool2IVtOfjv3abEy3xk3ncy8yD0TMmEUqLftovVhBFGJ5xoQtP0Bo2olGmilWK3aEQIzRItpLpHD217IISkSqQjdJriD38pjpBszhcbIHm3LZQ4P4Lrgi8Bb-B8gcYBXoINTd3s8Qq6b1_iyge8LmOY-ThuumC72jd4Uca6rmo3tLu2t-T5HG_qfWOP7SO6q2KCp2seo91nvp19Jcv1fDGbLhPHFe0SRhWjnIOTUHBeyYpSyFLGqC0E00qXTkshtWKSkswRoksghabWKcdlqTQfo9dh7yn4-EHbmYO_hP4Cw6QQWmSCiagig8oF37YBKnMK9Y8Nv4YS03M1kavpuZor12h5GSw1APzLI9qMpRn_AwZpcuQ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hou, Hui-Rang</creator><creator>Meng, Qing-Hao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4608-273X</orcidid><orcidid>https://orcid.org/0000-0002-9915-7088</orcidid></search><sort><creationdate>2021</creationdate><title>A Double-Square-Based Electrode Sequence Learning Method for Odor Concentration Identification Using EEG Signals</title><author>Hou, Hui-Rang ; Meng, Qing-Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-2162133ec5eb33f5f11e87221ab42969dc95459625108c009de0b91ac6c35d693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological signal processing</topic><topic>Classification</topic><topic>Datasets</topic><topic>double-square-based electrode sequence (DSES) learning method</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Learning</topic><topic>Learning systems</topic><topic>odor concentration stimulation</topic><topic>Odors</topic><topic>Olfactory</topic><topic>olfactory electroencephalogram (EEG)</topic><topic>power-spectral-density (PSD) feature</topic><topic>Recognition</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Teaching methods</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Hui-Rang</creatorcontrib><creatorcontrib>Meng, Qing-Hao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Hui-Rang</au><au>Meng, Qing-Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Double-Square-Based Electrode Sequence Learning Method for Odor Concentration Identification Using EEG Signals</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract><![CDATA[The aim of this study is to improve the recognition performance of olfactory electroencephalogram (EEG) signals induced by different odor concentrations, which is a new challenge in the field of olfactory EEG research. To do this, a novel double-square-based electrode sequence (DSES) learning method is elaborately proposed. First, two square-based feature sets, each with <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> levels, are constructed based on <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> power-spectral-density (PSD) features extracted from <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> EEG electrodes. Subsequently, the electrode sequence (ES) codes are obtained by arranging the <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> feature values of each level of each square feature set in ascending order. Finally, inspired by the <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-nearest neighbor (<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>-NN), a minimum inconsistency classification is presented to find the odor concentration class whose ES codes are the least inconsistent with those of the testing sample. In the experiment, rose and rotten odors, each with five concentrations, were used to induce olfactory EEG signals on 13 participants. Experimental results reveal that, using the proposed DSES method, considerably high classification accuracies of 94.2% and 92.9% on five different concentrations of the rose and rotten odors were obtained, respectively, significantly outperforming ten other methods. These results verify the superiority of the proposed DSES method in identifying different odor concentrations. In addition, the EEG dataset with 4550 samples is made public through the website presented in this study. In this way, the proposed DSES method combined with the published EEG dataset may further promote the development of olfactory EEG recognition research.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2021.3090177</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4608-273X</orcidid><orcidid>https://orcid.org/0000-0002-9915-7088</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-10
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2021_3090177
source IEEE Electronic Library (IEL) Journals
subjects Biological signal processing
Classification
Datasets
double-square-based electrode sequence (DSES) learning method
Electrodes
Electroencephalography
Feature extraction
Learning
Learning systems
odor concentration stimulation
Odors
Olfactory
olfactory electroencephalogram (EEG)
power-spectral-density (PSD) feature
Recognition
Signal processing
Signal processing algorithms
Teaching methods
Websites
title A Double-Square-Based Electrode Sequence Learning Method for Odor Concentration Identification Using EEG Signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Double-Square-Based%20Electrode%20Sequence%20Learning%20Method%20for%20Odor%20Concentration%20Identification%20Using%20EEG%20Signals&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Hou,%20Hui-Rang&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2021.3090177&rft_dat=%3Cproquest_cross%3E2544948424%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-2162133ec5eb33f5f11e87221ab42969dc95459625108c009de0b91ac6c35d693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544948424&rft_id=info:pmid/&rft_ieee_id=9458278&rfr_iscdi=true