Loading…

An IR-UWB Multi-Sensor Approach for Collision Avoidance in Indoor Environments

This article aims to propose new techniques to detect and distinguish humans from moving machines in indoor environments. Although many research efforts have been already dedicated to humans' indoor detection, most of the work has been focused on counting people and crowd measurement for consum...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-13
Main Authors: Khan, Faheem, Azou, Stephane, Youssef, Roua, Morel, Pascal, Radoi, Emanuel, Dobre, Octavia A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-a1305a023ed9e532d0398750699a310838f086ad015b043d97c428beb6a4b37f3
cites cdi_FETCH-LOGICAL-c367t-a1305a023ed9e532d0398750699a310838f086ad015b043d97c428beb6a4b37f3
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 71
creator Khan, Faheem
Azou, Stephane
Youssef, Roua
Morel, Pascal
Radoi, Emanuel
Dobre, Octavia A.
description This article aims to propose new techniques to detect and distinguish humans from moving machines in indoor environments. Although many research efforts have been already dedicated to humans' indoor detection, most of the work has been focused on counting people and crowd measurement for consumer business applications. Our objective is to develop a reliable approach for humans' indoor detection and localization aiming at avoiding collisions inside a mixed Industry 4.0 manned and unmanned environment to enhance personal and equipment safety and to prevent unwanted intrusions. An original aspect of our research is that we have worked on the real-time estimation of humans' and moving machines' positions while addressing the problems of multipath components and noise clutter detection. A multipulse constant false alarm rate detection algorithm is also proposed for removing the misdetections due to heavy clutter components in the indoor environment. Four impulse radio ultrawideband transceivers are placed in a specific geometry and data fusion is performed to reduce the influence of multipath and noise on the detection process. A convolutional neural network (CNN) is then used to extract the patterns corresponding to a moving machine and humans and classify them accordingly. Experiments have been carried out in two different indoor environments to demonstrate the performance of the proposed algorithms.
doi_str_mv 10.1109/TIM.2022.3150582
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2022_3150582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9709314</ieee_id><sourcerecordid>2635045858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-a1305a023ed9e532d0398750699a310838f086ad015b043d97c428beb6a4b37f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wc2AKxdTX5LJ13Is1RZaBW1xGdKZDE2ZJnXSFvz3plS6CknOvbx3ELrHMMAY1PN8MhsQIGRAMQMmyQXqYcZErjgnl6gHgGWuCsav0U2MawAQvBA99F76bPKZL75fstm-3bn8y_oYuqzcbrtgqlXWpMswtK2LLvisPARXG1_ZzKWcr0P6HfmD64LfWL-Lt-iqMW20d_9nHy1eR_PhOJ9-vE2G5TSvKBe73GAKzAChtlaWUVIDVVIw4EoZikFS2YDkpgbMllDQWomqIHJpl9wUSyoa2kdPp96VafW2cxvT_epgnB6XU318A5ocYFEccGIfT2za6Gdv406vw77zaTxNOGVQMMlkouBEVV2IsbPNuRaDPhrWybA-Gtb_hlPk4RRx1tozrgQoigv6B5dsc84</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635045858</pqid></control><display><type>article</type><title>An IR-UWB Multi-Sensor Approach for Collision Avoidance in Indoor Environments</title><source>IEEE Xplore (Online service)</source><creator>Khan, Faheem ; Azou, Stephane ; Youssef, Roua ; Morel, Pascal ; Radoi, Emanuel ; Dobre, Octavia A.</creator><creatorcontrib>Khan, Faheem ; Azou, Stephane ; Youssef, Roua ; Morel, Pascal ; Radoi, Emanuel ; Dobre, Octavia A.</creatorcontrib><description>This article aims to propose new techniques to detect and distinguish humans from moving machines in indoor environments. Although many research efforts have been already dedicated to humans' indoor detection, most of the work has been focused on counting people and crowd measurement for consumer business applications. Our objective is to develop a reliable approach for humans' indoor detection and localization aiming at avoiding collisions inside a mixed Industry 4.0 manned and unmanned environment to enhance personal and equipment safety and to prevent unwanted intrusions. An original aspect of our research is that we have worked on the real-time estimation of humans' and moving machines' positions while addressing the problems of multipath components and noise clutter detection. A multipulse constant false alarm rate detection algorithm is also proposed for removing the misdetections due to heavy clutter components in the indoor environment. Four impulse radio ultrawideband transceivers are placed in a specific geometry and data fusion is performed to reduce the influence of multipath and noise on the detection process. A convolutional neural network (CNN) is then used to extract the patterns corresponding to a moving machine and humans and classify them accordingly. Experiments have been carried out in two different indoor environments to demonstrate the performance of the proposed algorithms.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3150582</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Clutter ; Collision avoidance ; Constant false alarm rate ; Data integration ; Engineering Sciences ; Feature extraction ; human detection and localization ; impulse radio ultrawideband (UWB) ; Indoor environments ; Location awareness ; monostatic radar array ; multipath ; Radar ; Radar detection ; Radar tracking ; Sensors ; Signal and Image processing ; smart sensing ; Ultrawideband</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-a1305a023ed9e532d0398750699a310838f086ad015b043d97c428beb6a4b37f3</citedby><cites>FETCH-LOGICAL-c367t-a1305a023ed9e532d0398750699a310838f086ad015b043d97c428beb6a4b37f3</cites><orcidid>0000-0002-8754-6297 ; 0000-0002-6671-1185 ; 0000-0002-0819-6285 ; 0000-0001-8528-0512 ; 0000-0001-8185-7134 ; 0000-0002-9852-4149 ; 0000-0002-8916-7717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9709314$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03582174$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Faheem</creatorcontrib><creatorcontrib>Azou, Stephane</creatorcontrib><creatorcontrib>Youssef, Roua</creatorcontrib><creatorcontrib>Morel, Pascal</creatorcontrib><creatorcontrib>Radoi, Emanuel</creatorcontrib><creatorcontrib>Dobre, Octavia A.</creatorcontrib><title>An IR-UWB Multi-Sensor Approach for Collision Avoidance in Indoor Environments</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This article aims to propose new techniques to detect and distinguish humans from moving machines in indoor environments. Although many research efforts have been already dedicated to humans' indoor detection, most of the work has been focused on counting people and crowd measurement for consumer business applications. Our objective is to develop a reliable approach for humans' indoor detection and localization aiming at avoiding collisions inside a mixed Industry 4.0 manned and unmanned environment to enhance personal and equipment safety and to prevent unwanted intrusions. An original aspect of our research is that we have worked on the real-time estimation of humans' and moving machines' positions while addressing the problems of multipath components and noise clutter detection. A multipulse constant false alarm rate detection algorithm is also proposed for removing the misdetections due to heavy clutter components in the indoor environment. Four impulse radio ultrawideband transceivers are placed in a specific geometry and data fusion is performed to reduce the influence of multipath and noise on the detection process. A convolutional neural network (CNN) is then used to extract the patterns corresponding to a moving machine and humans and classify them accordingly. Experiments have been carried out in two different indoor environments to demonstrate the performance of the proposed algorithms.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Clutter</subject><subject>Collision avoidance</subject><subject>Constant false alarm rate</subject><subject>Data integration</subject><subject>Engineering Sciences</subject><subject>Feature extraction</subject><subject>human detection and localization</subject><subject>impulse radio ultrawideband (UWB)</subject><subject>Indoor environments</subject><subject>Location awareness</subject><subject>monostatic radar array</subject><subject>multipath</subject><subject>Radar</subject><subject>Radar detection</subject><subject>Radar tracking</subject><subject>Sensors</subject><subject>Signal and Image processing</subject><subject>smart sensing</subject><subject>Ultrawideband</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWKt7wc2AKxdTX5LJ13Is1RZaBW1xGdKZDE2ZJnXSFvz3plS6CknOvbx3ELrHMMAY1PN8MhsQIGRAMQMmyQXqYcZErjgnl6gHgGWuCsav0U2MawAQvBA99F76bPKZL75fstm-3bn8y_oYuqzcbrtgqlXWpMswtK2LLvisPARXG1_ZzKWcr0P6HfmD64LfWL-Lt-iqMW20d_9nHy1eR_PhOJ9-vE2G5TSvKBe73GAKzAChtlaWUVIDVVIw4EoZikFS2YDkpgbMllDQWomqIHJpl9wUSyoa2kdPp96VafW2cxvT_epgnB6XU318A5ocYFEccGIfT2za6Gdv406vw77zaTxNOGVQMMlkouBEVV2IsbPNuRaDPhrWybA-Gtb_hlPk4RRx1tozrgQoigv6B5dsc84</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Khan, Faheem</creator><creator>Azou, Stephane</creator><creator>Youssef, Roua</creator><creator>Morel, Pascal</creator><creator>Radoi, Emanuel</creator><creator>Dobre, Octavia A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8754-6297</orcidid><orcidid>https://orcid.org/0000-0002-6671-1185</orcidid><orcidid>https://orcid.org/0000-0002-0819-6285</orcidid><orcidid>https://orcid.org/0000-0001-8528-0512</orcidid><orcidid>https://orcid.org/0000-0001-8185-7134</orcidid><orcidid>https://orcid.org/0000-0002-9852-4149</orcidid><orcidid>https://orcid.org/0000-0002-8916-7717</orcidid></search><sort><creationdate>2022</creationdate><title>An IR-UWB Multi-Sensor Approach for Collision Avoidance in Indoor Environments</title><author>Khan, Faheem ; Azou, Stephane ; Youssef, Roua ; Morel, Pascal ; Radoi, Emanuel ; Dobre, Octavia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-a1305a023ed9e532d0398750699a310838f086ad015b043d97c428beb6a4b37f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Clutter</topic><topic>Collision avoidance</topic><topic>Constant false alarm rate</topic><topic>Data integration</topic><topic>Engineering Sciences</topic><topic>Feature extraction</topic><topic>human detection and localization</topic><topic>impulse radio ultrawideband (UWB)</topic><topic>Indoor environments</topic><topic>Location awareness</topic><topic>monostatic radar array</topic><topic>multipath</topic><topic>Radar</topic><topic>Radar detection</topic><topic>Radar tracking</topic><topic>Sensors</topic><topic>Signal and Image processing</topic><topic>smart sensing</topic><topic>Ultrawideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Faheem</creatorcontrib><creatorcontrib>Azou, Stephane</creatorcontrib><creatorcontrib>Youssef, Roua</creatorcontrib><creatorcontrib>Morel, Pascal</creatorcontrib><creatorcontrib>Radoi, Emanuel</creatorcontrib><creatorcontrib>Dobre, Octavia A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Faheem</au><au>Azou, Stephane</au><au>Youssef, Roua</au><au>Morel, Pascal</au><au>Radoi, Emanuel</au><au>Dobre, Octavia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An IR-UWB Multi-Sensor Approach for Collision Avoidance in Indoor Environments</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This article aims to propose new techniques to detect and distinguish humans from moving machines in indoor environments. Although many research efforts have been already dedicated to humans' indoor detection, most of the work has been focused on counting people and crowd measurement for consumer business applications. Our objective is to develop a reliable approach for humans' indoor detection and localization aiming at avoiding collisions inside a mixed Industry 4.0 manned and unmanned environment to enhance personal and equipment safety and to prevent unwanted intrusions. An original aspect of our research is that we have worked on the real-time estimation of humans' and moving machines' positions while addressing the problems of multipath components and noise clutter detection. A multipulse constant false alarm rate detection algorithm is also proposed for removing the misdetections due to heavy clutter components in the indoor environment. Four impulse radio ultrawideband transceivers are placed in a specific geometry and data fusion is performed to reduce the influence of multipath and noise on the detection process. A convolutional neural network (CNN) is then used to extract the patterns corresponding to a moving machine and humans and classify them accordingly. Experiments have been carried out in two different indoor environments to demonstrate the performance of the proposed algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3150582</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8754-6297</orcidid><orcidid>https://orcid.org/0000-0002-6671-1185</orcidid><orcidid>https://orcid.org/0000-0002-0819-6285</orcidid><orcidid>https://orcid.org/0000-0001-8528-0512</orcidid><orcidid>https://orcid.org/0000-0001-8185-7134</orcidid><orcidid>https://orcid.org/0000-0002-9852-4149</orcidid><orcidid>https://orcid.org/0000-0002-8916-7717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-13
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2022_3150582
source IEEE Xplore (Online service)
subjects Algorithms
Artificial neural networks
Clutter
Collision avoidance
Constant false alarm rate
Data integration
Engineering Sciences
Feature extraction
human detection and localization
impulse radio ultrawideband (UWB)
Indoor environments
Location awareness
monostatic radar array
multipath
Radar
Radar detection
Radar tracking
Sensors
Signal and Image processing
smart sensing
Ultrawideband
title An IR-UWB Multi-Sensor Approach for Collision Avoidance in Indoor Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20IR-UWB%20Multi-Sensor%20Approach%20for%20Collision%20Avoidance%20in%20Indoor%20Environments&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Khan,%20Faheem&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3150582&rft_dat=%3Cproquest_cross%3E2635045858%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-a1305a023ed9e532d0398750699a310838f086ad015b043d97c428beb6a4b37f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635045858&rft_id=info:pmid/&rft_ieee_id=9709314&rfr_iscdi=true