Loading…
An IR-UWB Multi-Sensor Approach for Collision Avoidance in Indoor Environments
This article aims to propose new techniques to detect and distinguish humans from moving machines in indoor environments. Although many research efforts have been already dedicated to humans' indoor detection, most of the work has been focused on counting people and crowd measurement for consum...
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-13 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-a1305a023ed9e532d0398750699a310838f086ad015b043d97c428beb6a4b37f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-a1305a023ed9e532d0398750699a310838f086ad015b043d97c428beb6a4b37f3 |
container_end_page | 13 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 71 |
creator | Khan, Faheem Azou, Stephane Youssef, Roua Morel, Pascal Radoi, Emanuel Dobre, Octavia A. |
description | This article aims to propose new techniques to detect and distinguish humans from moving machines in indoor environments. Although many research efforts have been already dedicated to humans' indoor detection, most of the work has been focused on counting people and crowd measurement for consumer business applications. Our objective is to develop a reliable approach for humans' indoor detection and localization aiming at avoiding collisions inside a mixed Industry 4.0 manned and unmanned environment to enhance personal and equipment safety and to prevent unwanted intrusions. An original aspect of our research is that we have worked on the real-time estimation of humans' and moving machines' positions while addressing the problems of multipath components and noise clutter detection. A multipulse constant false alarm rate detection algorithm is also proposed for removing the misdetections due to heavy clutter components in the indoor environment. Four impulse radio ultrawideband transceivers are placed in a specific geometry and data fusion is performed to reduce the influence of multipath and noise on the detection process. A convolutional neural network (CNN) is then used to extract the patterns corresponding to a moving machine and humans and classify them accordingly. Experiments have been carried out in two different indoor environments to demonstrate the performance of the proposed algorithms. |
doi_str_mv | 10.1109/TIM.2022.3150582 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2022_3150582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9709314</ieee_id><sourcerecordid>2635045858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-a1305a023ed9e532d0398750699a310838f086ad015b043d97c428beb6a4b37f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wc2AKxdTX5LJ13Is1RZaBW1xGdKZDE2ZJnXSFvz3plS6CknOvbx3ELrHMMAY1PN8MhsQIGRAMQMmyQXqYcZErjgnl6gHgGWuCsav0U2MawAQvBA99F76bPKZL75fstm-3bn8y_oYuqzcbrtgqlXWpMswtK2LLvisPARXG1_ZzKWcr0P6HfmD64LfWL-Lt-iqMW20d_9nHy1eR_PhOJ9-vE2G5TSvKBe73GAKzAChtlaWUVIDVVIw4EoZikFS2YDkpgbMllDQWomqIHJpl9wUSyoa2kdPp96VafW2cxvT_epgnB6XU318A5ocYFEccGIfT2za6Gdv406vw77zaTxNOGVQMMlkouBEVV2IsbPNuRaDPhrWybA-Gtb_hlPk4RRx1tozrgQoigv6B5dsc84</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635045858</pqid></control><display><type>article</type><title>An IR-UWB Multi-Sensor Approach for Collision Avoidance in Indoor Environments</title><source>IEEE Xplore (Online service)</source><creator>Khan, Faheem ; Azou, Stephane ; Youssef, Roua ; Morel, Pascal ; Radoi, Emanuel ; Dobre, Octavia A.</creator><creatorcontrib>Khan, Faheem ; Azou, Stephane ; Youssef, Roua ; Morel, Pascal ; Radoi, Emanuel ; Dobre, Octavia A.</creatorcontrib><description>This article aims to propose new techniques to detect and distinguish humans from moving machines in indoor environments. Although many research efforts have been already dedicated to humans' indoor detection, most of the work has been focused on counting people and crowd measurement for consumer business applications. Our objective is to develop a reliable approach for humans' indoor detection and localization aiming at avoiding collisions inside a mixed Industry 4.0 manned and unmanned environment to enhance personal and equipment safety and to prevent unwanted intrusions. An original aspect of our research is that we have worked on the real-time estimation of humans' and moving machines' positions while addressing the problems of multipath components and noise clutter detection. A multipulse constant false alarm rate detection algorithm is also proposed for removing the misdetections due to heavy clutter components in the indoor environment. Four impulse radio ultrawideband transceivers are placed in a specific geometry and data fusion is performed to reduce the influence of multipath and noise on the detection process. A convolutional neural network (CNN) is then used to extract the patterns corresponding to a moving machine and humans and classify them accordingly. Experiments have been carried out in two different indoor environments to demonstrate the performance of the proposed algorithms.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3150582</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Clutter ; Collision avoidance ; Constant false alarm rate ; Data integration ; Engineering Sciences ; Feature extraction ; human detection and localization ; impulse radio ultrawideband (UWB) ; Indoor environments ; Location awareness ; monostatic radar array ; multipath ; Radar ; Radar detection ; Radar tracking ; Sensors ; Signal and Image processing ; smart sensing ; Ultrawideband</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-a1305a023ed9e532d0398750699a310838f086ad015b043d97c428beb6a4b37f3</citedby><cites>FETCH-LOGICAL-c367t-a1305a023ed9e532d0398750699a310838f086ad015b043d97c428beb6a4b37f3</cites><orcidid>0000-0002-8754-6297 ; 0000-0002-6671-1185 ; 0000-0002-0819-6285 ; 0000-0001-8528-0512 ; 0000-0001-8185-7134 ; 0000-0002-9852-4149 ; 0000-0002-8916-7717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9709314$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03582174$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Faheem</creatorcontrib><creatorcontrib>Azou, Stephane</creatorcontrib><creatorcontrib>Youssef, Roua</creatorcontrib><creatorcontrib>Morel, Pascal</creatorcontrib><creatorcontrib>Radoi, Emanuel</creatorcontrib><creatorcontrib>Dobre, Octavia A.</creatorcontrib><title>An IR-UWB Multi-Sensor Approach for Collision Avoidance in Indoor Environments</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This article aims to propose new techniques to detect and distinguish humans from moving machines in indoor environments. Although many research efforts have been already dedicated to humans' indoor detection, most of the work has been focused on counting people and crowd measurement for consumer business applications. Our objective is to develop a reliable approach for humans' indoor detection and localization aiming at avoiding collisions inside a mixed Industry 4.0 manned and unmanned environment to enhance personal and equipment safety and to prevent unwanted intrusions. An original aspect of our research is that we have worked on the real-time estimation of humans' and moving machines' positions while addressing the problems of multipath components and noise clutter detection. A multipulse constant false alarm rate detection algorithm is also proposed for removing the misdetections due to heavy clutter components in the indoor environment. Four impulse radio ultrawideband transceivers are placed in a specific geometry and data fusion is performed to reduce the influence of multipath and noise on the detection process. A convolutional neural network (CNN) is then used to extract the patterns corresponding to a moving machine and humans and classify them accordingly. Experiments have been carried out in two different indoor environments to demonstrate the performance of the proposed algorithms.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Clutter</subject><subject>Collision avoidance</subject><subject>Constant false alarm rate</subject><subject>Data integration</subject><subject>Engineering Sciences</subject><subject>Feature extraction</subject><subject>human detection and localization</subject><subject>impulse radio ultrawideband (UWB)</subject><subject>Indoor environments</subject><subject>Location awareness</subject><subject>monostatic radar array</subject><subject>multipath</subject><subject>Radar</subject><subject>Radar detection</subject><subject>Radar tracking</subject><subject>Sensors</subject><subject>Signal and Image processing</subject><subject>smart sensing</subject><subject>Ultrawideband</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWKt7wc2AKxdTX5LJ13Is1RZaBW1xGdKZDE2ZJnXSFvz3plS6CknOvbx3ELrHMMAY1PN8MhsQIGRAMQMmyQXqYcZErjgnl6gHgGWuCsav0U2MawAQvBA99F76bPKZL75fstm-3bn8y_oYuqzcbrtgqlXWpMswtK2LLvisPARXG1_ZzKWcr0P6HfmD64LfWL-Lt-iqMW20d_9nHy1eR_PhOJ9-vE2G5TSvKBe73GAKzAChtlaWUVIDVVIw4EoZikFS2YDkpgbMllDQWomqIHJpl9wUSyoa2kdPp96VafW2cxvT_epgnB6XU318A5ocYFEccGIfT2za6Gdv406vw77zaTxNOGVQMMlkouBEVV2IsbPNuRaDPhrWybA-Gtb_hlPk4RRx1tozrgQoigv6B5dsc84</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Khan, Faheem</creator><creator>Azou, Stephane</creator><creator>Youssef, Roua</creator><creator>Morel, Pascal</creator><creator>Radoi, Emanuel</creator><creator>Dobre, Octavia A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8754-6297</orcidid><orcidid>https://orcid.org/0000-0002-6671-1185</orcidid><orcidid>https://orcid.org/0000-0002-0819-6285</orcidid><orcidid>https://orcid.org/0000-0001-8528-0512</orcidid><orcidid>https://orcid.org/0000-0001-8185-7134</orcidid><orcidid>https://orcid.org/0000-0002-9852-4149</orcidid><orcidid>https://orcid.org/0000-0002-8916-7717</orcidid></search><sort><creationdate>2022</creationdate><title>An IR-UWB Multi-Sensor Approach for Collision Avoidance in Indoor Environments</title><author>Khan, Faheem ; Azou, Stephane ; Youssef, Roua ; Morel, Pascal ; Radoi, Emanuel ; Dobre, Octavia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-a1305a023ed9e532d0398750699a310838f086ad015b043d97c428beb6a4b37f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Clutter</topic><topic>Collision avoidance</topic><topic>Constant false alarm rate</topic><topic>Data integration</topic><topic>Engineering Sciences</topic><topic>Feature extraction</topic><topic>human detection and localization</topic><topic>impulse radio ultrawideband (UWB)</topic><topic>Indoor environments</topic><topic>Location awareness</topic><topic>monostatic radar array</topic><topic>multipath</topic><topic>Radar</topic><topic>Radar detection</topic><topic>Radar tracking</topic><topic>Sensors</topic><topic>Signal and Image processing</topic><topic>smart sensing</topic><topic>Ultrawideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Faheem</creatorcontrib><creatorcontrib>Azou, Stephane</creatorcontrib><creatorcontrib>Youssef, Roua</creatorcontrib><creatorcontrib>Morel, Pascal</creatorcontrib><creatorcontrib>Radoi, Emanuel</creatorcontrib><creatorcontrib>Dobre, Octavia A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Faheem</au><au>Azou, Stephane</au><au>Youssef, Roua</au><au>Morel, Pascal</au><au>Radoi, Emanuel</au><au>Dobre, Octavia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An IR-UWB Multi-Sensor Approach for Collision Avoidance in Indoor Environments</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This article aims to propose new techniques to detect and distinguish humans from moving machines in indoor environments. Although many research efforts have been already dedicated to humans' indoor detection, most of the work has been focused on counting people and crowd measurement for consumer business applications. Our objective is to develop a reliable approach for humans' indoor detection and localization aiming at avoiding collisions inside a mixed Industry 4.0 manned and unmanned environment to enhance personal and equipment safety and to prevent unwanted intrusions. An original aspect of our research is that we have worked on the real-time estimation of humans' and moving machines' positions while addressing the problems of multipath components and noise clutter detection. A multipulse constant false alarm rate detection algorithm is also proposed for removing the misdetections due to heavy clutter components in the indoor environment. Four impulse radio ultrawideband transceivers are placed in a specific geometry and data fusion is performed to reduce the influence of multipath and noise on the detection process. A convolutional neural network (CNN) is then used to extract the patterns corresponding to a moving machine and humans and classify them accordingly. Experiments have been carried out in two different indoor environments to demonstrate the performance of the proposed algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3150582</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8754-6297</orcidid><orcidid>https://orcid.org/0000-0002-6671-1185</orcidid><orcidid>https://orcid.org/0000-0002-0819-6285</orcidid><orcidid>https://orcid.org/0000-0001-8528-0512</orcidid><orcidid>https://orcid.org/0000-0001-8185-7134</orcidid><orcidid>https://orcid.org/0000-0002-9852-4149</orcidid><orcidid>https://orcid.org/0000-0002-8916-7717</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-13 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2022_3150582 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Artificial neural networks Clutter Collision avoidance Constant false alarm rate Data integration Engineering Sciences Feature extraction human detection and localization impulse radio ultrawideband (UWB) Indoor environments Location awareness monostatic radar array multipath Radar Radar detection Radar tracking Sensors Signal and Image processing smart sensing Ultrawideband |
title | An IR-UWB Multi-Sensor Approach for Collision Avoidance in Indoor Environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20IR-UWB%20Multi-Sensor%20Approach%20for%20Collision%20Avoidance%20in%20Indoor%20Environments&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Khan,%20Faheem&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3150582&rft_dat=%3Cproquest_cross%3E2635045858%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-a1305a023ed9e532d0398750699a310838f086ad015b043d97c428beb6a4b37f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635045858&rft_id=info:pmid/&rft_ieee_id=9709314&rfr_iscdi=true |