Loading…

Optical Detection for the Adsorption Kinetics of Surfactant Solutions on the Surface/Interface: Oblique-Incidence Reflectivity Difference Investigation

The interaction of interfacial molecules was a hot issue in many fields, such as petroleum: the adsorption kinetics process of surfactant molecules on the interface was the key to reduce the dynamic interfacial tension and enhance oil recovery. Since the aggregation behavior of surfactant molecules...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-7
Main Authors: Qin, Fankai, Meng, Zhaohui, Li, Anqi, Miao, Xinyang, Zhao, Kun, Xiang, Wenfeng, Zhan, Honglei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-1c2dc655e775a4d665947d471768a817b898ba01276bc8f9936b43267f1192593
cites cdi_FETCH-LOGICAL-c291t-1c2dc655e775a4d665947d471768a817b898ba01276bc8f9936b43267f1192593
container_end_page 7
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 71
creator Qin, Fankai
Meng, Zhaohui
Li, Anqi
Miao, Xinyang
Zhao, Kun
Xiang, Wenfeng
Zhan, Honglei
description The interaction of interfacial molecules was a hot issue in many fields, such as petroleum: the adsorption kinetics process of surfactant molecules on the interface was the key to reduce the dynamic interfacial tension and enhance oil recovery. Since the aggregation behavior of surfactant molecules on the water surface would lead to changes in the dielectric properties of the surface layer, we applied a dielectric detection technology with a vertical resolution of nanometer precision, oblique-incidence reflectivity difference (OIRD) technology, to study the adsorption kinetics of surfactant molecules on the water surface in this article. According to the test results, we established a model of molecular dynamic adsorption and explained its mechanism. This dynamic process could be divided into three stages: micelles dissociated in bulk water, molecules diffused to the subsurface layer, and molecules broke through the adsorption barrier and adsorbed on the water surface. Among them, the diffusion process was in accordance with Fick's second law, and the process of surfactant molecules being adsorbed from the subsurface to the surface can be described by the Arrhenius formula. This work was not only applicable to the petroleum field to understand the essence of surfactant reducing surface tension but also to help investigate the subject of molecular behavior at the liquid-liquid or gas-liquid interface in other fields.
doi_str_mv 10.1109/TIM.2022.3170986
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2022_3170986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9764724</ieee_id><sourcerecordid>2665841468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1c2dc655e775a4d665947d471768a817b898ba01276bc8f9936b43267f1192593</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOD72gpuA645JmubhTnwWlQEf65KmNxqp6ZhkBH-Jf9d2RlwlnHvOuZcPoSNK5pQSffpcP8wZYWxeUkm0EltoRqtKFloIto1mhFBVaF6JXbSX0jshRAouZ-hnsczemh5fQgab_RCwGyLOb4DPuzTE5Vq68wFGW8KDw0-r6IzNJmT8NPSraT7qYR3ZzOC0DhnWvzO8aHv_uYKiDtZ3ECzgR3D9tOrL52986Z2DuNbr8AUp-1czVR6gHWf6BId_7z56ub56vrgt7hc39cX5fWGZprmglnVWVBVIWRneCVFpLjsuqRTKKCpbpVVrCGVStFY5rUvR8pIJ6SjVrNLlPjrZ9C7jMJ6ZcvM-rGIYVzZsbFOccqFGF9m4bBxSiuCaZfQfJn43lDQT_mbE30z4mz_8Y-R4E_EA8G_XE3XGy1-kd4Kr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665841468</pqid></control><display><type>article</type><title>Optical Detection for the Adsorption Kinetics of Surfactant Solutions on the Surface/Interface: Oblique-Incidence Reflectivity Difference Investigation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Qin, Fankai ; Meng, Zhaohui ; Li, Anqi ; Miao, Xinyang ; Zhao, Kun ; Xiang, Wenfeng ; Zhan, Honglei</creator><creatorcontrib>Qin, Fankai ; Meng, Zhaohui ; Li, Anqi ; Miao, Xinyang ; Zhao, Kun ; Xiang, Wenfeng ; Zhan, Honglei</creatorcontrib><description>The interaction of interfacial molecules was a hot issue in many fields, such as petroleum: the adsorption kinetics process of surfactant molecules on the interface was the key to reduce the dynamic interfacial tension and enhance oil recovery. Since the aggregation behavior of surfactant molecules on the water surface would lead to changes in the dielectric properties of the surface layer, we applied a dielectric detection technology with a vertical resolution of nanometer precision, oblique-incidence reflectivity difference (OIRD) technology, to study the adsorption kinetics of surfactant molecules on the water surface in this article. According to the test results, we established a model of molecular dynamic adsorption and explained its mechanism. This dynamic process could be divided into three stages: micelles dissociated in bulk water, molecules diffused to the subsurface layer, and molecules broke through the adsorption barrier and adsorbed on the water surface. Among them, the diffusion process was in accordance with Fick's second law, and the process of surfactant molecules being adsorbed from the subsurface to the surface can be described by the Arrhenius formula. This work was not only applicable to the petroleum field to understand the essence of surfactant reducing surface tension but also to help investigate the subject of molecular behavior at the liquid-liquid or gas-liquid interface in other fields.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3170986</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adsorption ; Dielectric constant ; Dielectric properties ; diffusion ; Diffusion barriers ; Diffusion layers ; Enhanced oil recovery ; interface ; Kinetic theory ; Kinetics ; Micelles ; Molecular dynamics ; oblique-incidence reflectivity difference (OIRD) ; Oil recovery ; Oils ; Petroleum ; Reflectance ; Surface chemistry ; Surface layers ; Surface tension ; surfactant ; Surfactants ; Temperature</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1c2dc655e775a4d665947d471768a817b898ba01276bc8f9936b43267f1192593</citedby><cites>FETCH-LOGICAL-c291t-1c2dc655e775a4d665947d471768a817b898ba01276bc8f9936b43267f1192593</cites><orcidid>0000-0002-2930-779X ; 0000-0003-4276-4044 ; 0000-0001-8302-7062 ; 0000-0002-2966-4746 ; 0000-0002-2837-3816 ; 0000-0001-9961-9855 ; 0000-0002-0373-7556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9764724$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Qin, Fankai</creatorcontrib><creatorcontrib>Meng, Zhaohui</creatorcontrib><creatorcontrib>Li, Anqi</creatorcontrib><creatorcontrib>Miao, Xinyang</creatorcontrib><creatorcontrib>Zhao, Kun</creatorcontrib><creatorcontrib>Xiang, Wenfeng</creatorcontrib><creatorcontrib>Zhan, Honglei</creatorcontrib><title>Optical Detection for the Adsorption Kinetics of Surfactant Solutions on the Surface/Interface: Oblique-Incidence Reflectivity Difference Investigation</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The interaction of interfacial molecules was a hot issue in many fields, such as petroleum: the adsorption kinetics process of surfactant molecules on the interface was the key to reduce the dynamic interfacial tension and enhance oil recovery. Since the aggregation behavior of surfactant molecules on the water surface would lead to changes in the dielectric properties of the surface layer, we applied a dielectric detection technology with a vertical resolution of nanometer precision, oblique-incidence reflectivity difference (OIRD) technology, to study the adsorption kinetics of surfactant molecules on the water surface in this article. According to the test results, we established a model of molecular dynamic adsorption and explained its mechanism. This dynamic process could be divided into three stages: micelles dissociated in bulk water, molecules diffused to the subsurface layer, and molecules broke through the adsorption barrier and adsorbed on the water surface. Among them, the diffusion process was in accordance with Fick's second law, and the process of surfactant molecules being adsorbed from the subsurface to the surface can be described by the Arrhenius formula. This work was not only applicable to the petroleum field to understand the essence of surfactant reducing surface tension but also to help investigate the subject of molecular behavior at the liquid-liquid or gas-liquid interface in other fields.</description><subject>Adsorption</subject><subject>Dielectric constant</subject><subject>Dielectric properties</subject><subject>diffusion</subject><subject>Diffusion barriers</subject><subject>Diffusion layers</subject><subject>Enhanced oil recovery</subject><subject>interface</subject><subject>Kinetic theory</subject><subject>Kinetics</subject><subject>Micelles</subject><subject>Molecular dynamics</subject><subject>oblique-incidence reflectivity difference (OIRD)</subject><subject>Oil recovery</subject><subject>Oils</subject><subject>Petroleum</subject><subject>Reflectance</subject><subject>Surface chemistry</subject><subject>Surface layers</subject><subject>Surface tension</subject><subject>surfactant</subject><subject>Surfactants</subject><subject>Temperature</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOD72gpuA645JmubhTnwWlQEf65KmNxqp6ZhkBH-Jf9d2RlwlnHvOuZcPoSNK5pQSffpcP8wZYWxeUkm0EltoRqtKFloIto1mhFBVaF6JXbSX0jshRAouZ-hnsczemh5fQgab_RCwGyLOb4DPuzTE5Vq68wFGW8KDw0-r6IzNJmT8NPSraT7qYR3ZzOC0DhnWvzO8aHv_uYKiDtZ3ECzgR3D9tOrL52986Z2DuNbr8AUp-1czVR6gHWf6BId_7z56ub56vrgt7hc39cX5fWGZprmglnVWVBVIWRneCVFpLjsuqRTKKCpbpVVrCGVStFY5rUvR8pIJ6SjVrNLlPjrZ9C7jMJ6ZcvM-rGIYVzZsbFOccqFGF9m4bBxSiuCaZfQfJn43lDQT_mbE30z4mz_8Y-R4E_EA8G_XE3XGy1-kd4Kr</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Qin, Fankai</creator><creator>Meng, Zhaohui</creator><creator>Li, Anqi</creator><creator>Miao, Xinyang</creator><creator>Zhao, Kun</creator><creator>Xiang, Wenfeng</creator><creator>Zhan, Honglei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2930-779X</orcidid><orcidid>https://orcid.org/0000-0003-4276-4044</orcidid><orcidid>https://orcid.org/0000-0001-8302-7062</orcidid><orcidid>https://orcid.org/0000-0002-2966-4746</orcidid><orcidid>https://orcid.org/0000-0002-2837-3816</orcidid><orcidid>https://orcid.org/0000-0001-9961-9855</orcidid><orcidid>https://orcid.org/0000-0002-0373-7556</orcidid></search><sort><creationdate>2022</creationdate><title>Optical Detection for the Adsorption Kinetics of Surfactant Solutions on the Surface/Interface: Oblique-Incidence Reflectivity Difference Investigation</title><author>Qin, Fankai ; Meng, Zhaohui ; Li, Anqi ; Miao, Xinyang ; Zhao, Kun ; Xiang, Wenfeng ; Zhan, Honglei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1c2dc655e775a4d665947d471768a817b898ba01276bc8f9936b43267f1192593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Dielectric constant</topic><topic>Dielectric properties</topic><topic>diffusion</topic><topic>Diffusion barriers</topic><topic>Diffusion layers</topic><topic>Enhanced oil recovery</topic><topic>interface</topic><topic>Kinetic theory</topic><topic>Kinetics</topic><topic>Micelles</topic><topic>Molecular dynamics</topic><topic>oblique-incidence reflectivity difference (OIRD)</topic><topic>Oil recovery</topic><topic>Oils</topic><topic>Petroleum</topic><topic>Reflectance</topic><topic>Surface chemistry</topic><topic>Surface layers</topic><topic>Surface tension</topic><topic>surfactant</topic><topic>Surfactants</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Fankai</creatorcontrib><creatorcontrib>Meng, Zhaohui</creatorcontrib><creatorcontrib>Li, Anqi</creatorcontrib><creatorcontrib>Miao, Xinyang</creatorcontrib><creatorcontrib>Zhao, Kun</creatorcontrib><creatorcontrib>Xiang, Wenfeng</creatorcontrib><creatorcontrib>Zhan, Honglei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Fankai</au><au>Meng, Zhaohui</au><au>Li, Anqi</au><au>Miao, Xinyang</au><au>Zhao, Kun</au><au>Xiang, Wenfeng</au><au>Zhan, Honglei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Detection for the Adsorption Kinetics of Surfactant Solutions on the Surface/Interface: Oblique-Incidence Reflectivity Difference Investigation</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The interaction of interfacial molecules was a hot issue in many fields, such as petroleum: the adsorption kinetics process of surfactant molecules on the interface was the key to reduce the dynamic interfacial tension and enhance oil recovery. Since the aggregation behavior of surfactant molecules on the water surface would lead to changes in the dielectric properties of the surface layer, we applied a dielectric detection technology with a vertical resolution of nanometer precision, oblique-incidence reflectivity difference (OIRD) technology, to study the adsorption kinetics of surfactant molecules on the water surface in this article. According to the test results, we established a model of molecular dynamic adsorption and explained its mechanism. This dynamic process could be divided into three stages: micelles dissociated in bulk water, molecules diffused to the subsurface layer, and molecules broke through the adsorption barrier and adsorbed on the water surface. Among them, the diffusion process was in accordance with Fick's second law, and the process of surfactant molecules being adsorbed from the subsurface to the surface can be described by the Arrhenius formula. This work was not only applicable to the petroleum field to understand the essence of surfactant reducing surface tension but also to help investigate the subject of molecular behavior at the liquid-liquid or gas-liquid interface in other fields.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3170986</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2930-779X</orcidid><orcidid>https://orcid.org/0000-0003-4276-4044</orcidid><orcidid>https://orcid.org/0000-0001-8302-7062</orcidid><orcidid>https://orcid.org/0000-0002-2966-4746</orcidid><orcidid>https://orcid.org/0000-0002-2837-3816</orcidid><orcidid>https://orcid.org/0000-0001-9961-9855</orcidid><orcidid>https://orcid.org/0000-0002-0373-7556</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-7
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2022_3170986
source IEEE Electronic Library (IEL) Journals
subjects Adsorption
Dielectric constant
Dielectric properties
diffusion
Diffusion barriers
Diffusion layers
Enhanced oil recovery
interface
Kinetic theory
Kinetics
Micelles
Molecular dynamics
oblique-incidence reflectivity difference (OIRD)
Oil recovery
Oils
Petroleum
Reflectance
Surface chemistry
Surface layers
Surface tension
surfactant
Surfactants
Temperature
title Optical Detection for the Adsorption Kinetics of Surfactant Solutions on the Surface/Interface: Oblique-Incidence Reflectivity Difference Investigation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A23%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Detection%20for%20the%20Adsorption%20Kinetics%20of%20Surfactant%20Solutions%20on%20the%20Surface/Interface:%20Oblique-Incidence%20Reflectivity%20Difference%20Investigation&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Qin,%20Fankai&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3170986&rft_dat=%3Cproquest_cross%3E2665841468%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-1c2dc655e775a4d665947d471768a817b898ba01276bc8f9936b43267f1192593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2665841468&rft_id=info:pmid/&rft_ieee_id=9764724&rfr_iscdi=true