Loading…
Optical Detection for the Adsorption Kinetics of Surfactant Solutions on the Surface/Interface: Oblique-Incidence Reflectivity Difference Investigation
The interaction of interfacial molecules was a hot issue in many fields, such as petroleum: the adsorption kinetics process of surfactant molecules on the interface was the key to reduce the dynamic interfacial tension and enhance oil recovery. Since the aggregation behavior of surfactant molecules...
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-7 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-1c2dc655e775a4d665947d471768a817b898ba01276bc8f9936b43267f1192593 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-1c2dc655e775a4d665947d471768a817b898ba01276bc8f9936b43267f1192593 |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 71 |
creator | Qin, Fankai Meng, Zhaohui Li, Anqi Miao, Xinyang Zhao, Kun Xiang, Wenfeng Zhan, Honglei |
description | The interaction of interfacial molecules was a hot issue in many fields, such as petroleum: the adsorption kinetics process of surfactant molecules on the interface was the key to reduce the dynamic interfacial tension and enhance oil recovery. Since the aggregation behavior of surfactant molecules on the water surface would lead to changes in the dielectric properties of the surface layer, we applied a dielectric detection technology with a vertical resolution of nanometer precision, oblique-incidence reflectivity difference (OIRD) technology, to study the adsorption kinetics of surfactant molecules on the water surface in this article. According to the test results, we established a model of molecular dynamic adsorption and explained its mechanism. This dynamic process could be divided into three stages: micelles dissociated in bulk water, molecules diffused to the subsurface layer, and molecules broke through the adsorption barrier and adsorbed on the water surface. Among them, the diffusion process was in accordance with Fick's second law, and the process of surfactant molecules being adsorbed from the subsurface to the surface can be described by the Arrhenius formula. This work was not only applicable to the petroleum field to understand the essence of surfactant reducing surface tension but also to help investigate the subject of molecular behavior at the liquid-liquid or gas-liquid interface in other fields. |
doi_str_mv | 10.1109/TIM.2022.3170986 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2022_3170986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9764724</ieee_id><sourcerecordid>2665841468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1c2dc655e775a4d665947d471768a817b898ba01276bc8f9936b43267f1192593</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOD72gpuA645JmubhTnwWlQEf65KmNxqp6ZhkBH-Jf9d2RlwlnHvOuZcPoSNK5pQSffpcP8wZYWxeUkm0EltoRqtKFloIto1mhFBVaF6JXbSX0jshRAouZ-hnsczemh5fQgab_RCwGyLOb4DPuzTE5Vq68wFGW8KDw0-r6IzNJmT8NPSraT7qYR3ZzOC0DhnWvzO8aHv_uYKiDtZ3ECzgR3D9tOrL52986Z2DuNbr8AUp-1czVR6gHWf6BId_7z56ub56vrgt7hc39cX5fWGZprmglnVWVBVIWRneCVFpLjsuqRTKKCpbpVVrCGVStFY5rUvR8pIJ6SjVrNLlPjrZ9C7jMJ6ZcvM-rGIYVzZsbFOccqFGF9m4bBxSiuCaZfQfJn43lDQT_mbE30z4mz_8Y-R4E_EA8G_XE3XGy1-kd4Kr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665841468</pqid></control><display><type>article</type><title>Optical Detection for the Adsorption Kinetics of Surfactant Solutions on the Surface/Interface: Oblique-Incidence Reflectivity Difference Investigation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Qin, Fankai ; Meng, Zhaohui ; Li, Anqi ; Miao, Xinyang ; Zhao, Kun ; Xiang, Wenfeng ; Zhan, Honglei</creator><creatorcontrib>Qin, Fankai ; Meng, Zhaohui ; Li, Anqi ; Miao, Xinyang ; Zhao, Kun ; Xiang, Wenfeng ; Zhan, Honglei</creatorcontrib><description>The interaction of interfacial molecules was a hot issue in many fields, such as petroleum: the adsorption kinetics process of surfactant molecules on the interface was the key to reduce the dynamic interfacial tension and enhance oil recovery. Since the aggregation behavior of surfactant molecules on the water surface would lead to changes in the dielectric properties of the surface layer, we applied a dielectric detection technology with a vertical resolution of nanometer precision, oblique-incidence reflectivity difference (OIRD) technology, to study the adsorption kinetics of surfactant molecules on the water surface in this article. According to the test results, we established a model of molecular dynamic adsorption and explained its mechanism. This dynamic process could be divided into three stages: micelles dissociated in bulk water, molecules diffused to the subsurface layer, and molecules broke through the adsorption barrier and adsorbed on the water surface. Among them, the diffusion process was in accordance with Fick's second law, and the process of surfactant molecules being adsorbed from the subsurface to the surface can be described by the Arrhenius formula. This work was not only applicable to the petroleum field to understand the essence of surfactant reducing surface tension but also to help investigate the subject of molecular behavior at the liquid-liquid or gas-liquid interface in other fields.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3170986</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adsorption ; Dielectric constant ; Dielectric properties ; diffusion ; Diffusion barriers ; Diffusion layers ; Enhanced oil recovery ; interface ; Kinetic theory ; Kinetics ; Micelles ; Molecular dynamics ; oblique-incidence reflectivity difference (OIRD) ; Oil recovery ; Oils ; Petroleum ; Reflectance ; Surface chemistry ; Surface layers ; Surface tension ; surfactant ; Surfactants ; Temperature</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1c2dc655e775a4d665947d471768a817b898ba01276bc8f9936b43267f1192593</citedby><cites>FETCH-LOGICAL-c291t-1c2dc655e775a4d665947d471768a817b898ba01276bc8f9936b43267f1192593</cites><orcidid>0000-0002-2930-779X ; 0000-0003-4276-4044 ; 0000-0001-8302-7062 ; 0000-0002-2966-4746 ; 0000-0002-2837-3816 ; 0000-0001-9961-9855 ; 0000-0002-0373-7556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9764724$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Qin, Fankai</creatorcontrib><creatorcontrib>Meng, Zhaohui</creatorcontrib><creatorcontrib>Li, Anqi</creatorcontrib><creatorcontrib>Miao, Xinyang</creatorcontrib><creatorcontrib>Zhao, Kun</creatorcontrib><creatorcontrib>Xiang, Wenfeng</creatorcontrib><creatorcontrib>Zhan, Honglei</creatorcontrib><title>Optical Detection for the Adsorption Kinetics of Surfactant Solutions on the Surface/Interface: Oblique-Incidence Reflectivity Difference Investigation</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The interaction of interfacial molecules was a hot issue in many fields, such as petroleum: the adsorption kinetics process of surfactant molecules on the interface was the key to reduce the dynamic interfacial tension and enhance oil recovery. Since the aggregation behavior of surfactant molecules on the water surface would lead to changes in the dielectric properties of the surface layer, we applied a dielectric detection technology with a vertical resolution of nanometer precision, oblique-incidence reflectivity difference (OIRD) technology, to study the adsorption kinetics of surfactant molecules on the water surface in this article. According to the test results, we established a model of molecular dynamic adsorption and explained its mechanism. This dynamic process could be divided into three stages: micelles dissociated in bulk water, molecules diffused to the subsurface layer, and molecules broke through the adsorption barrier and adsorbed on the water surface. Among them, the diffusion process was in accordance with Fick's second law, and the process of surfactant molecules being adsorbed from the subsurface to the surface can be described by the Arrhenius formula. This work was not only applicable to the petroleum field to understand the essence of surfactant reducing surface tension but also to help investigate the subject of molecular behavior at the liquid-liquid or gas-liquid interface in other fields.</description><subject>Adsorption</subject><subject>Dielectric constant</subject><subject>Dielectric properties</subject><subject>diffusion</subject><subject>Diffusion barriers</subject><subject>Diffusion layers</subject><subject>Enhanced oil recovery</subject><subject>interface</subject><subject>Kinetic theory</subject><subject>Kinetics</subject><subject>Micelles</subject><subject>Molecular dynamics</subject><subject>oblique-incidence reflectivity difference (OIRD)</subject><subject>Oil recovery</subject><subject>Oils</subject><subject>Petroleum</subject><subject>Reflectance</subject><subject>Surface chemistry</subject><subject>Surface layers</subject><subject>Surface tension</subject><subject>surfactant</subject><subject>Surfactants</subject><subject>Temperature</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOD72gpuA645JmubhTnwWlQEf65KmNxqp6ZhkBH-Jf9d2RlwlnHvOuZcPoSNK5pQSffpcP8wZYWxeUkm0EltoRqtKFloIto1mhFBVaF6JXbSX0jshRAouZ-hnsczemh5fQgab_RCwGyLOb4DPuzTE5Vq68wFGW8KDw0-r6IzNJmT8NPSraT7qYR3ZzOC0DhnWvzO8aHv_uYKiDtZ3ECzgR3D9tOrL52986Z2DuNbr8AUp-1czVR6gHWf6BId_7z56ub56vrgt7hc39cX5fWGZprmglnVWVBVIWRneCVFpLjsuqRTKKCpbpVVrCGVStFY5rUvR8pIJ6SjVrNLlPjrZ9C7jMJ6ZcvM-rGIYVzZsbFOccqFGF9m4bBxSiuCaZfQfJn43lDQT_mbE30z4mz_8Y-R4E_EA8G_XE3XGy1-kd4Kr</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Qin, Fankai</creator><creator>Meng, Zhaohui</creator><creator>Li, Anqi</creator><creator>Miao, Xinyang</creator><creator>Zhao, Kun</creator><creator>Xiang, Wenfeng</creator><creator>Zhan, Honglei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2930-779X</orcidid><orcidid>https://orcid.org/0000-0003-4276-4044</orcidid><orcidid>https://orcid.org/0000-0001-8302-7062</orcidid><orcidid>https://orcid.org/0000-0002-2966-4746</orcidid><orcidid>https://orcid.org/0000-0002-2837-3816</orcidid><orcidid>https://orcid.org/0000-0001-9961-9855</orcidid><orcidid>https://orcid.org/0000-0002-0373-7556</orcidid></search><sort><creationdate>2022</creationdate><title>Optical Detection for the Adsorption Kinetics of Surfactant Solutions on the Surface/Interface: Oblique-Incidence Reflectivity Difference Investigation</title><author>Qin, Fankai ; Meng, Zhaohui ; Li, Anqi ; Miao, Xinyang ; Zhao, Kun ; Xiang, Wenfeng ; Zhan, Honglei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1c2dc655e775a4d665947d471768a817b898ba01276bc8f9936b43267f1192593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Dielectric constant</topic><topic>Dielectric properties</topic><topic>diffusion</topic><topic>Diffusion barriers</topic><topic>Diffusion layers</topic><topic>Enhanced oil recovery</topic><topic>interface</topic><topic>Kinetic theory</topic><topic>Kinetics</topic><topic>Micelles</topic><topic>Molecular dynamics</topic><topic>oblique-incidence reflectivity difference (OIRD)</topic><topic>Oil recovery</topic><topic>Oils</topic><topic>Petroleum</topic><topic>Reflectance</topic><topic>Surface chemistry</topic><topic>Surface layers</topic><topic>Surface tension</topic><topic>surfactant</topic><topic>Surfactants</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Fankai</creatorcontrib><creatorcontrib>Meng, Zhaohui</creatorcontrib><creatorcontrib>Li, Anqi</creatorcontrib><creatorcontrib>Miao, Xinyang</creatorcontrib><creatorcontrib>Zhao, Kun</creatorcontrib><creatorcontrib>Xiang, Wenfeng</creatorcontrib><creatorcontrib>Zhan, Honglei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Fankai</au><au>Meng, Zhaohui</au><au>Li, Anqi</au><au>Miao, Xinyang</au><au>Zhao, Kun</au><au>Xiang, Wenfeng</au><au>Zhan, Honglei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Detection for the Adsorption Kinetics of Surfactant Solutions on the Surface/Interface: Oblique-Incidence Reflectivity Difference Investigation</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The interaction of interfacial molecules was a hot issue in many fields, such as petroleum: the adsorption kinetics process of surfactant molecules on the interface was the key to reduce the dynamic interfacial tension and enhance oil recovery. Since the aggregation behavior of surfactant molecules on the water surface would lead to changes in the dielectric properties of the surface layer, we applied a dielectric detection technology with a vertical resolution of nanometer precision, oblique-incidence reflectivity difference (OIRD) technology, to study the adsorption kinetics of surfactant molecules on the water surface in this article. According to the test results, we established a model of molecular dynamic adsorption and explained its mechanism. This dynamic process could be divided into three stages: micelles dissociated in bulk water, molecules diffused to the subsurface layer, and molecules broke through the adsorption barrier and adsorbed on the water surface. Among them, the diffusion process was in accordance with Fick's second law, and the process of surfactant molecules being adsorbed from the subsurface to the surface can be described by the Arrhenius formula. This work was not only applicable to the petroleum field to understand the essence of surfactant reducing surface tension but also to help investigate the subject of molecular behavior at the liquid-liquid or gas-liquid interface in other fields.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3170986</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2930-779X</orcidid><orcidid>https://orcid.org/0000-0003-4276-4044</orcidid><orcidid>https://orcid.org/0000-0001-8302-7062</orcidid><orcidid>https://orcid.org/0000-0002-2966-4746</orcidid><orcidid>https://orcid.org/0000-0002-2837-3816</orcidid><orcidid>https://orcid.org/0000-0001-9961-9855</orcidid><orcidid>https://orcid.org/0000-0002-0373-7556</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-7 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2022_3170986 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adsorption Dielectric constant Dielectric properties diffusion Diffusion barriers Diffusion layers Enhanced oil recovery interface Kinetic theory Kinetics Micelles Molecular dynamics oblique-incidence reflectivity difference (OIRD) Oil recovery Oils Petroleum Reflectance Surface chemistry Surface layers Surface tension surfactant Surfactants Temperature |
title | Optical Detection for the Adsorption Kinetics of Surfactant Solutions on the Surface/Interface: Oblique-Incidence Reflectivity Difference Investigation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A23%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Detection%20for%20the%20Adsorption%20Kinetics%20of%20Surfactant%20Solutions%20on%20the%20Surface/Interface:%20Oblique-Incidence%20Reflectivity%20Difference%20Investigation&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Qin,%20Fankai&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3170986&rft_dat=%3Cproquest_cross%3E2665841468%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-1c2dc655e775a4d665947d471768a817b898ba01276bc8f9936b43267f1192593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2665841468&rft_id=info:pmid/&rft_ieee_id=9764724&rfr_iscdi=true |