Loading…

Rolling Bearing Fault Diagnosis Based on Exact Moment Dynamics for Underdamped Periodic Potential Systems

This research is to build a more general bridge over the model investigation on stochastic resonance (SR) and the laboratory design in rolling bearing faults. To this end, we generalize the derivative matching moment closure method to the underdamped biased periodic potential systems to disclose the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 2023-01, Vol.72, p.1-1
Main Authors: Ding, Yamin, Kang, Yanmei, Zhai, Yajie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-3e1e6927d394c9e8da2ef4c387616d066faf8eefdcef1b2a38be35db8c77a3373
cites cdi_FETCH-LOGICAL-c339t-3e1e6927d394c9e8da2ef4c387616d066faf8eefdcef1b2a38be35db8c77a3373
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 72
creator Ding, Yamin
Kang, Yanmei
Zhai, Yajie
description This research is to build a more general bridge over the model investigation on stochastic resonance (SR) and the laboratory design in rolling bearing faults. To this end, we generalize the derivative matching moment closure method to the underdamped biased periodic potential systems to disclose the non-monotonic evolution of the spectral amplification factor. With the exact moment dynamics available, a two-layer loop algorithm for detecting the incipient bearing faults is then developed. With the outer loop to optimize the output SNR for the best time scale factor and the inner loop to maximize the spectral amplification factor for optimal system parameter, the semi-analytic results are directly related with this laboratory application. The analog and experimental verification based on different datasets show that the proposed method can perform as well as the existing SR method, even under strong noise background. Particularly, the proposed method does not depend on the amplitude of input signal when optimizing parameters, but only on noise intensity and characteristic fault frequency, thus it has higher detection efficiency than the existing simulation based SR methods.
doi_str_mv 10.1109/TIM.2023.3253873
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2023_3253873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10064034</ieee_id><sourcerecordid>2792118635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-3e1e6927d394c9e8da2ef4c387616d066faf8eefdcef1b2a38be35db8c77a3373</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYjePXho4nmxH7vt9ij4RQKRKJyb0s6Skt0ttksi_94lcPD0HuZ5ZzIPQveUjCgl6mk5nY8YYXzEWcFLyS_QgBaFzJQQ7BINCKFlpvJCXKOblLaEEClyOUD-K9S1bzd4DCYe883s6w6_eLNpQ_IJj00Ch0OLX3-N7fA8NND280NrGm8TrkLEq9ZBdKbZ9eACog_OW7wIXQ96U-PvQ-qgSbfoqjJ1grtzDtHq7XU5-chmn-_TyfMss5yrLuNAQSgmHVe5VVA6w6DKbf-SoMIRISpTlQCVs1DRNTO8XAMv3Lq0UhrOJR-ix9PeXQw_e0id3oZ9bPuTmknFKC0FL3qKnCgbQ0oRKr2LvjHxoCnRR6G6F6qPQvVZaF95OFU8APzDicgJz_kfle9zBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792118635</pqid></control><display><type>article</type><title>Rolling Bearing Fault Diagnosis Based on Exact Moment Dynamics for Underdamped Periodic Potential Systems</title><source>IEEE Xplore (Online service)</source><creator>Ding, Yamin ; Kang, Yanmei ; Zhai, Yajie</creator><creatorcontrib>Ding, Yamin ; Kang, Yanmei ; Zhai, Yajie</creatorcontrib><description>This research is to build a more general bridge over the model investigation on stochastic resonance (SR) and the laboratory design in rolling bearing faults. To this end, we generalize the derivative matching moment closure method to the underdamped biased periodic potential systems to disclose the non-monotonic evolution of the spectral amplification factor. With the exact moment dynamics available, a two-layer loop algorithm for detecting the incipient bearing faults is then developed. With the outer loop to optimize the output SNR for the best time scale factor and the inner loop to maximize the spectral amplification factor for optimal system parameter, the semi-analytic results are directly related with this laboratory application. The analog and experimental verification based on different datasets show that the proposed method can perform as well as the existing SR method, even under strong noise background. Particularly, the proposed method does not depend on the amplitude of input signal when optimizing parameters, but only on noise intensity and characteristic fault frequency, thus it has higher detection efficiency than the existing simulation based SR methods.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3253873</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Amplification ; Background noise ; bearing fault diagnosis ; Damping ; derivative matching closure ; Fault detection ; Fault diagnosis ; Heuristic algorithms ; Laboratories ; Noise intensity ; Noise measurement ; Optimization ; Parameters ; Periodical potential ; Roller bearings ; Rolling bearings ; Stochastic resonance ; Transforms</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-3e1e6927d394c9e8da2ef4c387616d066faf8eefdcef1b2a38be35db8c77a3373</citedby><cites>FETCH-LOGICAL-c339t-3e1e6927d394c9e8da2ef4c387616d066faf8eefdcef1b2a38be35db8c77a3373</cites><orcidid>0000-0001-7780-4128 ; 0000-0001-9042-0743 ; 0000-0001-8608-9242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10064034$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Ding, Yamin</creatorcontrib><creatorcontrib>Kang, Yanmei</creatorcontrib><creatorcontrib>Zhai, Yajie</creatorcontrib><title>Rolling Bearing Fault Diagnosis Based on Exact Moment Dynamics for Underdamped Periodic Potential Systems</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This research is to build a more general bridge over the model investigation on stochastic resonance (SR) and the laboratory design in rolling bearing faults. To this end, we generalize the derivative matching moment closure method to the underdamped biased periodic potential systems to disclose the non-monotonic evolution of the spectral amplification factor. With the exact moment dynamics available, a two-layer loop algorithm for detecting the incipient bearing faults is then developed. With the outer loop to optimize the output SNR for the best time scale factor and the inner loop to maximize the spectral amplification factor for optimal system parameter, the semi-analytic results are directly related with this laboratory application. The analog and experimental verification based on different datasets show that the proposed method can perform as well as the existing SR method, even under strong noise background. Particularly, the proposed method does not depend on the amplitude of input signal when optimizing parameters, but only on noise intensity and characteristic fault frequency, thus it has higher detection efficiency than the existing simulation based SR methods.</description><subject>Algorithms</subject><subject>Amplification</subject><subject>Background noise</subject><subject>bearing fault diagnosis</subject><subject>Damping</subject><subject>derivative matching closure</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Heuristic algorithms</subject><subject>Laboratories</subject><subject>Noise intensity</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Periodical potential</subject><subject>Roller bearings</subject><subject>Rolling bearings</subject><subject>Stochastic resonance</subject><subject>Transforms</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PAjEQhhujiYjePXho4nmxH7vt9ij4RQKRKJyb0s6Skt0ttksi_94lcPD0HuZ5ZzIPQveUjCgl6mk5nY8YYXzEWcFLyS_QgBaFzJQQ7BINCKFlpvJCXKOblLaEEClyOUD-K9S1bzd4DCYe883s6w6_eLNpQ_IJj00Ch0OLX3-N7fA8NND280NrGm8TrkLEq9ZBdKbZ9eACog_OW7wIXQ96U-PvQ-qgSbfoqjJ1grtzDtHq7XU5-chmn-_TyfMss5yrLuNAQSgmHVe5VVA6w6DKbf-SoMIRISpTlQCVs1DRNTO8XAMv3Lq0UhrOJR-ix9PeXQw_e0id3oZ9bPuTmknFKC0FL3qKnCgbQ0oRKr2LvjHxoCnRR6G6F6qPQvVZaF95OFU8APzDicgJz_kfle9zBQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Ding, Yamin</creator><creator>Kang, Yanmei</creator><creator>Zhai, Yajie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7780-4128</orcidid><orcidid>https://orcid.org/0000-0001-9042-0743</orcidid><orcidid>https://orcid.org/0000-0001-8608-9242</orcidid></search><sort><creationdate>20230101</creationdate><title>Rolling Bearing Fault Diagnosis Based on Exact Moment Dynamics for Underdamped Periodic Potential Systems</title><author>Ding, Yamin ; Kang, Yanmei ; Zhai, Yajie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-3e1e6927d394c9e8da2ef4c387616d066faf8eefdcef1b2a38be35db8c77a3373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Amplification</topic><topic>Background noise</topic><topic>bearing fault diagnosis</topic><topic>Damping</topic><topic>derivative matching closure</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Heuristic algorithms</topic><topic>Laboratories</topic><topic>Noise intensity</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Periodical potential</topic><topic>Roller bearings</topic><topic>Rolling bearings</topic><topic>Stochastic resonance</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yamin</creatorcontrib><creatorcontrib>Kang, Yanmei</creatorcontrib><creatorcontrib>Zhai, Yajie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yamin</au><au>Kang, Yanmei</au><au>Zhai, Yajie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rolling Bearing Fault Diagnosis Based on Exact Moment Dynamics for Underdamped Periodic Potential Systems</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This research is to build a more general bridge over the model investigation on stochastic resonance (SR) and the laboratory design in rolling bearing faults. To this end, we generalize the derivative matching moment closure method to the underdamped biased periodic potential systems to disclose the non-monotonic evolution of the spectral amplification factor. With the exact moment dynamics available, a two-layer loop algorithm for detecting the incipient bearing faults is then developed. With the outer loop to optimize the output SNR for the best time scale factor and the inner loop to maximize the spectral amplification factor for optimal system parameter, the semi-analytic results are directly related with this laboratory application. The analog and experimental verification based on different datasets show that the proposed method can perform as well as the existing SR method, even under strong noise background. Particularly, the proposed method does not depend on the amplitude of input signal when optimizing parameters, but only on noise intensity and characteristic fault frequency, thus it has higher detection efficiency than the existing simulation based SR methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3253873</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7780-4128</orcidid><orcidid>https://orcid.org/0000-0001-9042-0743</orcidid><orcidid>https://orcid.org/0000-0001-8608-9242</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2023_3253873
source IEEE Xplore (Online service)
subjects Algorithms
Amplification
Background noise
bearing fault diagnosis
Damping
derivative matching closure
Fault detection
Fault diagnosis
Heuristic algorithms
Laboratories
Noise intensity
Noise measurement
Optimization
Parameters
Periodical potential
Roller bearings
Rolling bearings
Stochastic resonance
Transforms
title Rolling Bearing Fault Diagnosis Based on Exact Moment Dynamics for Underdamped Periodic Potential Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rolling%20Bearing%20Fault%20Diagnosis%20Based%20on%20Exact%20Moment%20Dynamics%20for%20Underdamped%20Periodic%20Potential%20Systems&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Ding,%20Yamin&rft.date=2023-01-01&rft.volume=72&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3253873&rft_dat=%3Cproquest_cross%3E2792118635%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-3e1e6927d394c9e8da2ef4c387616d066faf8eefdcef1b2a38be35db8c77a3373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2792118635&rft_id=info:pmid/&rft_ieee_id=10064034&rfr_iscdi=true