Loading…
Rolling Bearing Fault Diagnosis Based on Exact Moment Dynamics for Underdamped Periodic Potential Systems
This research is to build a more general bridge over the model investigation on stochastic resonance (SR) and the laboratory design in rolling bearing faults. To this end, we generalize the derivative matching moment closure method to the underdamped biased periodic potential systems to disclose the...
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 2023-01, Vol.72, p.1-1 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c339t-3e1e6927d394c9e8da2ef4c387616d066faf8eefdcef1b2a38be35db8c77a3373 |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-3e1e6927d394c9e8da2ef4c387616d066faf8eefdcef1b2a38be35db8c77a3373 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 72 |
creator | Ding, Yamin Kang, Yanmei Zhai, Yajie |
description | This research is to build a more general bridge over the model investigation on stochastic resonance (SR) and the laboratory design in rolling bearing faults. To this end, we generalize the derivative matching moment closure method to the underdamped biased periodic potential systems to disclose the non-monotonic evolution of the spectral amplification factor. With the exact moment dynamics available, a two-layer loop algorithm for detecting the incipient bearing faults is then developed. With the outer loop to optimize the output SNR for the best time scale factor and the inner loop to maximize the spectral amplification factor for optimal system parameter, the semi-analytic results are directly related with this laboratory application. The analog and experimental verification based on different datasets show that the proposed method can perform as well as the existing SR method, even under strong noise background. Particularly, the proposed method does not depend on the amplitude of input signal when optimizing parameters, but only on noise intensity and characteristic fault frequency, thus it has higher detection efficiency than the existing simulation based SR methods. |
doi_str_mv | 10.1109/TIM.2023.3253873 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2023_3253873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10064034</ieee_id><sourcerecordid>2792118635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-3e1e6927d394c9e8da2ef4c387616d066faf8eefdcef1b2a38be35db8c77a3373</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYjePXho4nmxH7vt9ij4RQKRKJyb0s6Skt0ttksi_94lcPD0HuZ5ZzIPQveUjCgl6mk5nY8YYXzEWcFLyS_QgBaFzJQQ7BINCKFlpvJCXKOblLaEEClyOUD-K9S1bzd4DCYe883s6w6_eLNpQ_IJj00Ch0OLX3-N7fA8NND280NrGm8TrkLEq9ZBdKbZ9eACog_OW7wIXQ96U-PvQ-qgSbfoqjJ1grtzDtHq7XU5-chmn-_TyfMss5yrLuNAQSgmHVe5VVA6w6DKbf-SoMIRISpTlQCVs1DRNTO8XAMv3Lq0UhrOJR-ix9PeXQw_e0id3oZ9bPuTmknFKC0FL3qKnCgbQ0oRKr2LvjHxoCnRR6G6F6qPQvVZaF95OFU8APzDicgJz_kfle9zBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792118635</pqid></control><display><type>article</type><title>Rolling Bearing Fault Diagnosis Based on Exact Moment Dynamics for Underdamped Periodic Potential Systems</title><source>IEEE Xplore (Online service)</source><creator>Ding, Yamin ; Kang, Yanmei ; Zhai, Yajie</creator><creatorcontrib>Ding, Yamin ; Kang, Yanmei ; Zhai, Yajie</creatorcontrib><description>This research is to build a more general bridge over the model investigation on stochastic resonance (SR) and the laboratory design in rolling bearing faults. To this end, we generalize the derivative matching moment closure method to the underdamped biased periodic potential systems to disclose the non-monotonic evolution of the spectral amplification factor. With the exact moment dynamics available, a two-layer loop algorithm for detecting the incipient bearing faults is then developed. With the outer loop to optimize the output SNR for the best time scale factor and the inner loop to maximize the spectral amplification factor for optimal system parameter, the semi-analytic results are directly related with this laboratory application. The analog and experimental verification based on different datasets show that the proposed method can perform as well as the existing SR method, even under strong noise background. Particularly, the proposed method does not depend on the amplitude of input signal when optimizing parameters, but only on noise intensity and characteristic fault frequency, thus it has higher detection efficiency than the existing simulation based SR methods.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3253873</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Amplification ; Background noise ; bearing fault diagnosis ; Damping ; derivative matching closure ; Fault detection ; Fault diagnosis ; Heuristic algorithms ; Laboratories ; Noise intensity ; Noise measurement ; Optimization ; Parameters ; Periodical potential ; Roller bearings ; Rolling bearings ; Stochastic resonance ; Transforms</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-3e1e6927d394c9e8da2ef4c387616d066faf8eefdcef1b2a38be35db8c77a3373</citedby><cites>FETCH-LOGICAL-c339t-3e1e6927d394c9e8da2ef4c387616d066faf8eefdcef1b2a38be35db8c77a3373</cites><orcidid>0000-0001-7780-4128 ; 0000-0001-9042-0743 ; 0000-0001-8608-9242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10064034$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Ding, Yamin</creatorcontrib><creatorcontrib>Kang, Yanmei</creatorcontrib><creatorcontrib>Zhai, Yajie</creatorcontrib><title>Rolling Bearing Fault Diagnosis Based on Exact Moment Dynamics for Underdamped Periodic Potential Systems</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This research is to build a more general bridge over the model investigation on stochastic resonance (SR) and the laboratory design in rolling bearing faults. To this end, we generalize the derivative matching moment closure method to the underdamped biased periodic potential systems to disclose the non-monotonic evolution of the spectral amplification factor. With the exact moment dynamics available, a two-layer loop algorithm for detecting the incipient bearing faults is then developed. With the outer loop to optimize the output SNR for the best time scale factor and the inner loop to maximize the spectral amplification factor for optimal system parameter, the semi-analytic results are directly related with this laboratory application. The analog and experimental verification based on different datasets show that the proposed method can perform as well as the existing SR method, even under strong noise background. Particularly, the proposed method does not depend on the amplitude of input signal when optimizing parameters, but only on noise intensity and characteristic fault frequency, thus it has higher detection efficiency than the existing simulation based SR methods.</description><subject>Algorithms</subject><subject>Amplification</subject><subject>Background noise</subject><subject>bearing fault diagnosis</subject><subject>Damping</subject><subject>derivative matching closure</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Heuristic algorithms</subject><subject>Laboratories</subject><subject>Noise intensity</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Periodical potential</subject><subject>Roller bearings</subject><subject>Rolling bearings</subject><subject>Stochastic resonance</subject><subject>Transforms</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PAjEQhhujiYjePXho4nmxH7vt9ij4RQKRKJyb0s6Skt0ttksi_94lcPD0HuZ5ZzIPQveUjCgl6mk5nY8YYXzEWcFLyS_QgBaFzJQQ7BINCKFlpvJCXKOblLaEEClyOUD-K9S1bzd4DCYe883s6w6_eLNpQ_IJj00Ch0OLX3-N7fA8NND280NrGm8TrkLEq9ZBdKbZ9eACog_OW7wIXQ96U-PvQ-qgSbfoqjJ1grtzDtHq7XU5-chmn-_TyfMss5yrLuNAQSgmHVe5VVA6w6DKbf-SoMIRISpTlQCVs1DRNTO8XAMv3Lq0UhrOJR-ix9PeXQw_e0id3oZ9bPuTmknFKC0FL3qKnCgbQ0oRKr2LvjHxoCnRR6G6F6qPQvVZaF95OFU8APzDicgJz_kfle9zBQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Ding, Yamin</creator><creator>Kang, Yanmei</creator><creator>Zhai, Yajie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7780-4128</orcidid><orcidid>https://orcid.org/0000-0001-9042-0743</orcidid><orcidid>https://orcid.org/0000-0001-8608-9242</orcidid></search><sort><creationdate>20230101</creationdate><title>Rolling Bearing Fault Diagnosis Based on Exact Moment Dynamics for Underdamped Periodic Potential Systems</title><author>Ding, Yamin ; Kang, Yanmei ; Zhai, Yajie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-3e1e6927d394c9e8da2ef4c387616d066faf8eefdcef1b2a38be35db8c77a3373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Amplification</topic><topic>Background noise</topic><topic>bearing fault diagnosis</topic><topic>Damping</topic><topic>derivative matching closure</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Heuristic algorithms</topic><topic>Laboratories</topic><topic>Noise intensity</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Periodical potential</topic><topic>Roller bearings</topic><topic>Rolling bearings</topic><topic>Stochastic resonance</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yamin</creatorcontrib><creatorcontrib>Kang, Yanmei</creatorcontrib><creatorcontrib>Zhai, Yajie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yamin</au><au>Kang, Yanmei</au><au>Zhai, Yajie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rolling Bearing Fault Diagnosis Based on Exact Moment Dynamics for Underdamped Periodic Potential Systems</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This research is to build a more general bridge over the model investigation on stochastic resonance (SR) and the laboratory design in rolling bearing faults. To this end, we generalize the derivative matching moment closure method to the underdamped biased periodic potential systems to disclose the non-monotonic evolution of the spectral amplification factor. With the exact moment dynamics available, a two-layer loop algorithm for detecting the incipient bearing faults is then developed. With the outer loop to optimize the output SNR for the best time scale factor and the inner loop to maximize the spectral amplification factor for optimal system parameter, the semi-analytic results are directly related with this laboratory application. The analog and experimental verification based on different datasets show that the proposed method can perform as well as the existing SR method, even under strong noise background. Particularly, the proposed method does not depend on the amplitude of input signal when optimizing parameters, but only on noise intensity and characteristic fault frequency, thus it has higher detection efficiency than the existing simulation based SR methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3253873</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7780-4128</orcidid><orcidid>https://orcid.org/0000-0001-9042-0743</orcidid><orcidid>https://orcid.org/0000-0001-8608-9242</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2023_3253873 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Amplification Background noise bearing fault diagnosis Damping derivative matching closure Fault detection Fault diagnosis Heuristic algorithms Laboratories Noise intensity Noise measurement Optimization Parameters Periodical potential Roller bearings Rolling bearings Stochastic resonance Transforms |
title | Rolling Bearing Fault Diagnosis Based on Exact Moment Dynamics for Underdamped Periodic Potential Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rolling%20Bearing%20Fault%20Diagnosis%20Based%20on%20Exact%20Moment%20Dynamics%20for%20Underdamped%20Periodic%20Potential%20Systems&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Ding,%20Yamin&rft.date=2023-01-01&rft.volume=72&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3253873&rft_dat=%3Cproquest_cross%3E2792118635%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-3e1e6927d394c9e8da2ef4c387616d066faf8eefdcef1b2a38be35db8c77a3373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2792118635&rft_id=info:pmid/&rft_ieee_id=10064034&rfr_iscdi=true |