Loading…
A Fast and Robust Attitude Estimation Method Based on Vision-Inertial Tight Coupling With Unknown Correspondences
Simultaneous pose and correspondence determination (SPCD) plays a crucial role in attitude estimation with unknown correspondences. In contrast to the conventional loose integration of optimizing the initial pose selection of SPCD algorithms using inertial information, we refine the data collected b...
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-12 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c175t-4bc5a58c36f9b69f1a4efb42afdf78dc55be1259fcc95ceafd2227f122290bec3 |
container_end_page | 12 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 73 |
creator | Li, Yue Sun, Changku Lu, Yutai Wang, Dawei Wang, Peng Fu, Luhua |
description | Simultaneous pose and correspondence determination (SPCD) plays a crucial role in attitude estimation with unknown correspondences. In contrast to the conventional loose integration of optimizing the initial pose selection of SPCD algorithms using inertial information, we refine the data collected by the inertial sensors into motion information and tightly fuse it with the feature point information provided by the camera. As a result, the accuracy and computational speed of the attitude estimation are improved. Specifically, we propose a novel SPCD method that combines motion information-assisted feature point hybrid tracking (MIFHT) and cascaded square root cubature Kalman filter (CSRCKF), along with a vision-inertial tightly coupled framework incorporating robust strategies. Our method maintains high tracking accuracy even in visual occlusion and exhibits robustness against outliers. Finally, comparative experiments conducted on our measurement system validate the effectiveness and superiority of our method. While maintaining a convergence rate of 95%, the computational speed improves by 55.11% compared to the fastest existing SPCD method. |
doi_str_mv | 10.1109/TIM.2024.3472799 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2024_3472799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10705020</ieee_id><sourcerecordid>3120647555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-4bc5a58c36f9b69f1a4efb42afdf78dc55be1259fcc95ceafd2227f122290bec3</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJg_bh78BDwvDXJbjbNsZZWCxZBWj0u2eyLTa1Jm2QR_72R9uDlfQwz7zGD0A0lQ0qJvF_OF0NGWDUsK8GElCdoQDkXhaxrdooGhNBRISten6OLGDeEEFFXYoD2YzxTMWHlOvzq2z6P45Rs6jvA05jsl0rWO7yAtPYdflAROpz3NxszXMwdhGTVFi_txzrhie93W-s-8LtNa7xyn85_u4yGAHHnXQdOQ7xCZ0ZtI1wf-yVazabLyVPx_PI4n4yfC00FT0XVaq74SJe1kW0tDVUVmLZiynRGjDrNeQuUcWm0llxDhhljwtBcJWlBl5fo7nB3F_y-h5iaje-Dyy-bkjKS3XPOM4scWDr4GAOYZhey6fDTUNL8BdvkYJu_YJtjsFlye5BYAPhHF4QTRspf_E12TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120647555</pqid></control><display><type>article</type><title>A Fast and Robust Attitude Estimation Method Based on Vision-Inertial Tight Coupling With Unknown Correspondences</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Li, Yue ; Sun, Changku ; Lu, Yutai ; Wang, Dawei ; Wang, Peng ; Fu, Luhua</creator><creatorcontrib>Li, Yue ; Sun, Changku ; Lu, Yutai ; Wang, Dawei ; Wang, Peng ; Fu, Luhua</creatorcontrib><description>Simultaneous pose and correspondence determination (SPCD) plays a crucial role in attitude estimation with unknown correspondences. In contrast to the conventional loose integration of optimizing the initial pose selection of SPCD algorithms using inertial information, we refine the data collected by the inertial sensors into motion information and tightly fuse it with the feature point information provided by the camera. As a result, the accuracy and computational speed of the attitude estimation are improved. Specifically, we propose a novel SPCD method that combines motion information-assisted feature point hybrid tracking (MIFHT) and cascaded square root cubature Kalman filter (CSRCKF), along with a vision-inertial tightly coupled framework incorporating robust strategies. Our method maintains high tracking accuracy even in visual occlusion and exhibits robustness against outliers. Finally, comparative experiments conducted on our measurement system validate the effectiveness and superiority of our method. While maintaining a convergence rate of 95%, the computational speed improves by 55.11% compared to the fastest existing SPCD method.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3472799</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Attitude estimation ; Attitudes ; Cameras ; feature point tracking ; Inertial sensing devices ; Integrated circuit modeling ; Kalman filter ; Kalman filters ; Noise ; Occlusion ; Outliers (statistics) ; Pose estimation ; Robustness ; Solid modeling ; Symbols ; Target tracking ; Three-dimensional displays ; Tracking ; unknown correspondences ; Vision ; vision-inertial fusion ; Visualization</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-4bc5a58c36f9b69f1a4efb42afdf78dc55be1259fcc95ceafd2227f122290bec3</cites><orcidid>0000-0001-9031-983X ; 0009-0003-0710-9682 ; 0000-0003-1310-9630 ; 0000-0002-4428-0599 ; 0009-0005-7441-3750 ; 0000-0001-7775-0588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10705020$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4009,27902,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Sun, Changku</creatorcontrib><creatorcontrib>Lu, Yutai</creatorcontrib><creatorcontrib>Wang, Dawei</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Fu, Luhua</creatorcontrib><title>A Fast and Robust Attitude Estimation Method Based on Vision-Inertial Tight Coupling With Unknown Correspondences</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Simultaneous pose and correspondence determination (SPCD) plays a crucial role in attitude estimation with unknown correspondences. In contrast to the conventional loose integration of optimizing the initial pose selection of SPCD algorithms using inertial information, we refine the data collected by the inertial sensors into motion information and tightly fuse it with the feature point information provided by the camera. As a result, the accuracy and computational speed of the attitude estimation are improved. Specifically, we propose a novel SPCD method that combines motion information-assisted feature point hybrid tracking (MIFHT) and cascaded square root cubature Kalman filter (CSRCKF), along with a vision-inertial tightly coupled framework incorporating robust strategies. Our method maintains high tracking accuracy even in visual occlusion and exhibits robustness against outliers. Finally, comparative experiments conducted on our measurement system validate the effectiveness and superiority of our method. While maintaining a convergence rate of 95%, the computational speed improves by 55.11% compared to the fastest existing SPCD method.</description><subject>Algorithms</subject><subject>Attitude estimation</subject><subject>Attitudes</subject><subject>Cameras</subject><subject>feature point tracking</subject><subject>Inertial sensing devices</subject><subject>Integrated circuit modeling</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Noise</subject><subject>Occlusion</subject><subject>Outliers (statistics)</subject><subject>Pose estimation</subject><subject>Robustness</subject><subject>Solid modeling</subject><subject>Symbols</subject><subject>Target tracking</subject><subject>Three-dimensional displays</subject><subject>Tracking</subject><subject>unknown correspondences</subject><subject>Vision</subject><subject>vision-inertial fusion</subject><subject>Visualization</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNUE1LAzEUDKJg_bh78BDwvDXJbjbNsZZWCxZBWj0u2eyLTa1Jm2QR_72R9uDlfQwz7zGD0A0lQ0qJvF_OF0NGWDUsK8GElCdoQDkXhaxrdooGhNBRISten6OLGDeEEFFXYoD2YzxTMWHlOvzq2z6P45Rs6jvA05jsl0rWO7yAtPYdflAROpz3NxszXMwdhGTVFi_txzrhie93W-s-8LtNa7xyn85_u4yGAHHnXQdOQ7xCZ0ZtI1wf-yVazabLyVPx_PI4n4yfC00FT0XVaq74SJe1kW0tDVUVmLZiynRGjDrNeQuUcWm0llxDhhljwtBcJWlBl5fo7nB3F_y-h5iaje-Dyy-bkjKS3XPOM4scWDr4GAOYZhey6fDTUNL8BdvkYJu_YJtjsFlye5BYAPhHF4QTRspf_E12TQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Yue</creator><creator>Sun, Changku</creator><creator>Lu, Yutai</creator><creator>Wang, Dawei</creator><creator>Wang, Peng</creator><creator>Fu, Luhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9031-983X</orcidid><orcidid>https://orcid.org/0009-0003-0710-9682</orcidid><orcidid>https://orcid.org/0000-0003-1310-9630</orcidid><orcidid>https://orcid.org/0000-0002-4428-0599</orcidid><orcidid>https://orcid.org/0009-0005-7441-3750</orcidid><orcidid>https://orcid.org/0000-0001-7775-0588</orcidid></search><sort><creationdate>2024</creationdate><title>A Fast and Robust Attitude Estimation Method Based on Vision-Inertial Tight Coupling With Unknown Correspondences</title><author>Li, Yue ; Sun, Changku ; Lu, Yutai ; Wang, Dawei ; Wang, Peng ; Fu, Luhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-4bc5a58c36f9b69f1a4efb42afdf78dc55be1259fcc95ceafd2227f122290bec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Attitude estimation</topic><topic>Attitudes</topic><topic>Cameras</topic><topic>feature point tracking</topic><topic>Inertial sensing devices</topic><topic>Integrated circuit modeling</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Noise</topic><topic>Occlusion</topic><topic>Outliers (statistics)</topic><topic>Pose estimation</topic><topic>Robustness</topic><topic>Solid modeling</topic><topic>Symbols</topic><topic>Target tracking</topic><topic>Three-dimensional displays</topic><topic>Tracking</topic><topic>unknown correspondences</topic><topic>Vision</topic><topic>vision-inertial fusion</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Sun, Changku</creatorcontrib><creatorcontrib>Lu, Yutai</creatorcontrib><creatorcontrib>Wang, Dawei</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Fu, Luhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yue</au><au>Sun, Changku</au><au>Lu, Yutai</au><au>Wang, Dawei</au><au>Wang, Peng</au><au>Fu, Luhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fast and Robust Attitude Estimation Method Based on Vision-Inertial Tight Coupling With Unknown Correspondences</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Simultaneous pose and correspondence determination (SPCD) plays a crucial role in attitude estimation with unknown correspondences. In contrast to the conventional loose integration of optimizing the initial pose selection of SPCD algorithms using inertial information, we refine the data collected by the inertial sensors into motion information and tightly fuse it with the feature point information provided by the camera. As a result, the accuracy and computational speed of the attitude estimation are improved. Specifically, we propose a novel SPCD method that combines motion information-assisted feature point hybrid tracking (MIFHT) and cascaded square root cubature Kalman filter (CSRCKF), along with a vision-inertial tightly coupled framework incorporating robust strategies. Our method maintains high tracking accuracy even in visual occlusion and exhibits robustness against outliers. Finally, comparative experiments conducted on our measurement system validate the effectiveness and superiority of our method. While maintaining a convergence rate of 95%, the computational speed improves by 55.11% compared to the fastest existing SPCD method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3472799</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9031-983X</orcidid><orcidid>https://orcid.org/0009-0003-0710-9682</orcidid><orcidid>https://orcid.org/0000-0003-1310-9630</orcidid><orcidid>https://orcid.org/0000-0002-4428-0599</orcidid><orcidid>https://orcid.org/0009-0005-7441-3750</orcidid><orcidid>https://orcid.org/0000-0001-7775-0588</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-12 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIM_2024_3472799 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Attitude estimation Attitudes Cameras feature point tracking Inertial sensing devices Integrated circuit modeling Kalman filter Kalman filters Noise Occlusion Outliers (statistics) Pose estimation Robustness Solid modeling Symbols Target tracking Three-dimensional displays Tracking unknown correspondences Vision vision-inertial fusion Visualization |
title | A Fast and Robust Attitude Estimation Method Based on Vision-Inertial Tight Coupling With Unknown Correspondences |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A33%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fast%20and%20Robust%20Attitude%20Estimation%20Method%20Based%20on%20Vision-Inertial%20Tight%20Coupling%20With%20Unknown%20Correspondences&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Li,%20Yue&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3472799&rft_dat=%3Cproquest_cross%3E3120647555%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c175t-4bc5a58c36f9b69f1a4efb42afdf78dc55be1259fcc95ceafd2227f122290bec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120647555&rft_id=info:pmid/&rft_ieee_id=10705020&rfr_iscdi=true |