Loading…

Open-Circuit Fault Diagnosis and Analysis for Integrated Charging System Based on Bidirectional Gated Recurrent Unit and Attention Mechanism

Due to the widespread adoption of electric vehicles, integrated charging stations have been increasingly applied. However, because of the extensive number of components, when a fault occurs, how to identify the faulty components is a great challenge. In this article, considering the power conversion...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-12
Main Authors: Zhou, Jingyang, Liu, Kangli, Zhao, Jianfeng, Wang, Qingsong, Jin, Cheng, Pan, Xiaogang, Zhang, Congyue, Chen, Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c175t-b3ef07d8258f0edb3fb8c25156cb46171cd66ad4eb2a8cc90289b44a21ee2d73
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Zhou, Jingyang
Liu, Kangli
Zhao, Jianfeng
Wang, Qingsong
Jin, Cheng
Pan, Xiaogang
Zhang, Congyue
Chen, Peng
description Due to the widespread adoption of electric vehicles, integrated charging stations have been increasingly applied. However, because of the extensive number of components, when a fault occurs, how to identify the faulty components is a great challenge. In this article, considering the power conversion system of integrated charging stations, the impact of internal open-circuit faults in IGBTs and capacitors, along with fault identification methods, is discussed. By combining signal processing and deep learning for fault localization, the neural network model based on the bidirectional gated recurrent unit (Bi-GRU) and attention mechanism is proposed, which can flexibly learn crucial information, enhance the perception of important segments in sequences, and achieve higher accuracy in open-circuit fault identification. Through comparative analysis of the validation set among different models, the effectiveness and advantages of the proposed model and analysis are proved. The proposed method has good versatility and can be used for fault identification and operation reliability improvement for other power electronics-based systems.
doi_str_mv 10.1109/TIM.2024.3481562
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2024_3481562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10720037</ieee_id><sourcerecordid>3123119798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-b3ef07d8258f0edb3fb8c25156cb46171cd66ad4eb2a8cc90289b44a21ee2d73</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EEqWwMzBYYk6xnYeTsQRaKrWqBGW2HOcmddU6xXaG_gd-NO5jYLo6V9-5j4PQIyUjSknxspotRoywZBQnOU0zdoUGNE15VGQZu0YDQmgeFUma3aI75zaEEJ4lfIB-l3swUamt6rXHE9lvPX7TsjWd0w5LU-OxkdvDUTSdxTPjobXSQ43LtbStNi3-OjgPO_wqXeh2Br_qWltQXnfBiacn-BNUby0Yj79N2HOa633QAcILUGtptNvdo5tGbh08XOoQrSbvq_Ijmi-ns3I8jxTlqY-qGBrC65yleUOgruKmyhVLw9eqSjLKqaqzTNYJVEzmShWE5UWVJJJRAFbzeIiez2P3tvvpwXmx6XobjnUipiymtOBFHihyppTtnLPQiL3VO2kPghJxjFyEyMUxcnGJPFiezhYNAP9wzgiJefwHE-J_MQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123119798</pqid></control><display><type>article</type><title>Open-Circuit Fault Diagnosis and Analysis for Integrated Charging System Based on Bidirectional Gated Recurrent Unit and Attention Mechanism</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhou, Jingyang ; Liu, Kangli ; Zhao, Jianfeng ; Wang, Qingsong ; Jin, Cheng ; Pan, Xiaogang ; Zhang, Congyue ; Chen, Peng</creator><creatorcontrib>Zhou, Jingyang ; Liu, Kangli ; Zhao, Jianfeng ; Wang, Qingsong ; Jin, Cheng ; Pan, Xiaogang ; Zhang, Congyue ; Chen, Peng</creatorcontrib><description>Due to the widespread adoption of electric vehicles, integrated charging stations have been increasingly applied. However, because of the extensive number of components, when a fault occurs, how to identify the faulty components is a great challenge. In this article, considering the power conversion system of integrated charging stations, the impact of internal open-circuit faults in IGBTs and capacitors, along with fault identification methods, is discussed. By combining signal processing and deep learning for fault localization, the neural network model based on the bidirectional gated recurrent unit (Bi-GRU) and attention mechanism is proposed, which can flexibly learn crucial information, enhance the perception of important segments in sequences, and achieve higher accuracy in open-circuit fault identification. Through comparative analysis of the validation set among different models, the effectiveness and advantages of the proposed model and analysis are proved. The proposed method has good versatility and can be used for fault identification and operation reliability improvement for other power electronics-based systems.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3481562</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attention mechanism ; Attention mechanisms ; bidirectional gated recurrent unit (Bi-GRU) ; Capacitors ; Charging stations ; Circuit faults ; Electric vehicle charging ; Energy conversion ; Fault detection ; Fault diagnosis ; Fault location ; Feature extraction ; Identification methods ; integrated charging system ; Inverters ; Location awareness ; Neural networks ; open circuit ; Power conversion ; Switches ; System effectiveness ; System reliability</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-b3ef07d8258f0edb3fb8c25156cb46171cd66ad4eb2a8cc90289b44a21ee2d73</cites><orcidid>0000-0003-4891-7304 ; 0000-0001-8662-6394 ; 0009-0009-4629-1150 ; 0009-0007-4209-7241 ; 0000-0002-7498-6576 ; 0000-0002-2757-2549 ; 0000-0002-0066-9973 ; 0000-0003-1468-1954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10720037$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhou, Jingyang</creatorcontrib><creatorcontrib>Liu, Kangli</creatorcontrib><creatorcontrib>Zhao, Jianfeng</creatorcontrib><creatorcontrib>Wang, Qingsong</creatorcontrib><creatorcontrib>Jin, Cheng</creatorcontrib><creatorcontrib>Pan, Xiaogang</creatorcontrib><creatorcontrib>Zhang, Congyue</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><title>Open-Circuit Fault Diagnosis and Analysis for Integrated Charging System Based on Bidirectional Gated Recurrent Unit and Attention Mechanism</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Due to the widespread adoption of electric vehicles, integrated charging stations have been increasingly applied. However, because of the extensive number of components, when a fault occurs, how to identify the faulty components is a great challenge. In this article, considering the power conversion system of integrated charging stations, the impact of internal open-circuit faults in IGBTs and capacitors, along with fault identification methods, is discussed. By combining signal processing and deep learning for fault localization, the neural network model based on the bidirectional gated recurrent unit (Bi-GRU) and attention mechanism is proposed, which can flexibly learn crucial information, enhance the perception of important segments in sequences, and achieve higher accuracy in open-circuit fault identification. Through comparative analysis of the validation set among different models, the effectiveness and advantages of the proposed model and analysis are proved. The proposed method has good versatility and can be used for fault identification and operation reliability improvement for other power electronics-based systems.</description><subject>Attention mechanism</subject><subject>Attention mechanisms</subject><subject>bidirectional gated recurrent unit (Bi-GRU)</subject><subject>Capacitors</subject><subject>Charging stations</subject><subject>Circuit faults</subject><subject>Electric vehicle charging</subject><subject>Energy conversion</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Fault location</subject><subject>Feature extraction</subject><subject>Identification methods</subject><subject>integrated charging system</subject><subject>Inverters</subject><subject>Location awareness</subject><subject>Neural networks</subject><subject>open circuit</subject><subject>Power conversion</subject><subject>Switches</subject><subject>System effectiveness</subject><subject>System reliability</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAUhS0EEqWwMzBYYk6xnYeTsQRaKrWqBGW2HOcmddU6xXaG_gd-NO5jYLo6V9-5j4PQIyUjSknxspotRoywZBQnOU0zdoUGNE15VGQZu0YDQmgeFUma3aI75zaEEJ4lfIB-l3swUamt6rXHE9lvPX7TsjWd0w5LU-OxkdvDUTSdxTPjobXSQ43LtbStNi3-OjgPO_wqXeh2Br_qWltQXnfBiacn-BNUby0Yj79N2HOa633QAcILUGtptNvdo5tGbh08XOoQrSbvq_Ijmi-ns3I8jxTlqY-qGBrC65yleUOgruKmyhVLw9eqSjLKqaqzTNYJVEzmShWE5UWVJJJRAFbzeIiez2P3tvvpwXmx6XobjnUipiymtOBFHihyppTtnLPQiL3VO2kPghJxjFyEyMUxcnGJPFiezhYNAP9wzgiJefwHE-J_MQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhou, Jingyang</creator><creator>Liu, Kangli</creator><creator>Zhao, Jianfeng</creator><creator>Wang, Qingsong</creator><creator>Jin, Cheng</creator><creator>Pan, Xiaogang</creator><creator>Zhang, Congyue</creator><creator>Chen, Peng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4891-7304</orcidid><orcidid>https://orcid.org/0000-0001-8662-6394</orcidid><orcidid>https://orcid.org/0009-0009-4629-1150</orcidid><orcidid>https://orcid.org/0009-0007-4209-7241</orcidid><orcidid>https://orcid.org/0000-0002-7498-6576</orcidid><orcidid>https://orcid.org/0000-0002-2757-2549</orcidid><orcidid>https://orcid.org/0000-0002-0066-9973</orcidid><orcidid>https://orcid.org/0000-0003-1468-1954</orcidid></search><sort><creationdate>2024</creationdate><title>Open-Circuit Fault Diagnosis and Analysis for Integrated Charging System Based on Bidirectional Gated Recurrent Unit and Attention Mechanism</title><author>Zhou, Jingyang ; Liu, Kangli ; Zhao, Jianfeng ; Wang, Qingsong ; Jin, Cheng ; Pan, Xiaogang ; Zhang, Congyue ; Chen, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-b3ef07d8258f0edb3fb8c25156cb46171cd66ad4eb2a8cc90289b44a21ee2d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attention mechanism</topic><topic>Attention mechanisms</topic><topic>bidirectional gated recurrent unit (Bi-GRU)</topic><topic>Capacitors</topic><topic>Charging stations</topic><topic>Circuit faults</topic><topic>Electric vehicle charging</topic><topic>Energy conversion</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Fault location</topic><topic>Feature extraction</topic><topic>Identification methods</topic><topic>integrated charging system</topic><topic>Inverters</topic><topic>Location awareness</topic><topic>Neural networks</topic><topic>open circuit</topic><topic>Power conversion</topic><topic>Switches</topic><topic>System effectiveness</topic><topic>System reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jingyang</creatorcontrib><creatorcontrib>Liu, Kangli</creatorcontrib><creatorcontrib>Zhao, Jianfeng</creatorcontrib><creatorcontrib>Wang, Qingsong</creatorcontrib><creatorcontrib>Jin, Cheng</creatorcontrib><creatorcontrib>Pan, Xiaogang</creatorcontrib><creatorcontrib>Zhang, Congyue</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jingyang</au><au>Liu, Kangli</au><au>Zhao, Jianfeng</au><au>Wang, Qingsong</au><au>Jin, Cheng</au><au>Pan, Xiaogang</au><au>Zhang, Congyue</au><au>Chen, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open-Circuit Fault Diagnosis and Analysis for Integrated Charging System Based on Bidirectional Gated Recurrent Unit and Attention Mechanism</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Due to the widespread adoption of electric vehicles, integrated charging stations have been increasingly applied. However, because of the extensive number of components, when a fault occurs, how to identify the faulty components is a great challenge. In this article, considering the power conversion system of integrated charging stations, the impact of internal open-circuit faults in IGBTs and capacitors, along with fault identification methods, is discussed. By combining signal processing and deep learning for fault localization, the neural network model based on the bidirectional gated recurrent unit (Bi-GRU) and attention mechanism is proposed, which can flexibly learn crucial information, enhance the perception of important segments in sequences, and achieve higher accuracy in open-circuit fault identification. Through comparative analysis of the validation set among different models, the effectiveness and advantages of the proposed model and analysis are proved. The proposed method has good versatility and can be used for fault identification and operation reliability improvement for other power electronics-based systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3481562</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4891-7304</orcidid><orcidid>https://orcid.org/0000-0001-8662-6394</orcidid><orcidid>https://orcid.org/0009-0009-4629-1150</orcidid><orcidid>https://orcid.org/0009-0007-4209-7241</orcidid><orcidid>https://orcid.org/0000-0002-7498-6576</orcidid><orcidid>https://orcid.org/0000-0002-2757-2549</orcidid><orcidid>https://orcid.org/0000-0002-0066-9973</orcidid><orcidid>https://orcid.org/0000-0003-1468-1954</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-12
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2024_3481562
source IEEE Electronic Library (IEL) Journals
subjects Attention mechanism
Attention mechanisms
bidirectional gated recurrent unit (Bi-GRU)
Capacitors
Charging stations
Circuit faults
Electric vehicle charging
Energy conversion
Fault detection
Fault diagnosis
Fault location
Feature extraction
Identification methods
integrated charging system
Inverters
Location awareness
Neural networks
open circuit
Power conversion
Switches
System effectiveness
System reliability
title Open-Circuit Fault Diagnosis and Analysis for Integrated Charging System Based on Bidirectional Gated Recurrent Unit and Attention Mechanism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open-Circuit%20Fault%20Diagnosis%20and%20Analysis%20for%20Integrated%20Charging%20System%20Based%20on%20Bidirectional%20Gated%20Recurrent%20Unit%20and%20Attention%20Mechanism&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Zhou,%20Jingyang&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3481562&rft_dat=%3Cproquest_cross%3E3123119798%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c175t-b3ef07d8258f0edb3fb8c25156cb46171cd66ad4eb2a8cc90289b44a21ee2d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123119798&rft_id=info:pmid/&rft_ieee_id=10720037&rfr_iscdi=true