Loading…
A Fast and Effective Model for Wavelet Subband Histograms and Its Application in Texture Image Retrieval
This paper presents a novel, effective, and efficient characterization of wavelet subbands by bit-plane extractions. Each bit plane is associated with a probability that represents the frequency of 1-bit occurrence, and the concatenation of all the bit-plane probabilities forms our new image signatu...
Saved in:
Published in: | IEEE transactions on image processing 2006-10, Vol.15 (10), p.3078-3088 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a novel, effective, and efficient characterization of wavelet subbands by bit-plane extractions. Each bit plane is associated with a probability that represents the frequency of 1-bit occurrence, and the concatenation of all the bit-plane probabilities forms our new image signature. Such a signature can be extracted directly from the code-block code-stream, rather than from the de-quantized wavelet coefficients, making our method particularly adaptable for image retrieval in the compression domain such as JPEG2000 format images. Our signatures have smaller storage requirement and lower computational complexity, and yet, experimental results on texture image retrieval show that our proposed signatures are much more cost effective to current state-of-the-art methods including the generalized Gaussian density signatures and histogram signatures |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2006.877509 |