Loading…
Conditional Random Field Model for Robust Multi-Focus Image Fusion
In this paper, a novel multi-focus image fusion algorithm based on conditional random field optimization (mf-CRF) is proposed. It is based on an unary term that includes the combined activity estimation of both high and low frequencies of the input images, while a spatially varying smoothness term i...
Saved in:
Published in: | IEEE transactions on image processing 2019-11, Vol.28 (11), p.5636-5648 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a novel multi-focus image fusion algorithm based on conditional random field optimization (mf-CRF) is proposed. It is based on an unary term that includes the combined activity estimation of both high and low frequencies of the input images, while a spatially varying smoothness term is introduced, in order to align the graph-cut solution with boundaries of focused and defocused pixels. The proposed model retains the advantages of both spatial-domain methods and multi-spectral methods and by solving an energy minimization problem and finds an optimal solution for the multi-focus image fusion problem. Experimental results demonstrate the effectiveness of the proposed method that outperforms current state-of-the-art multi-focus image fusion algorithms in both qualitative and quantitative comparisons. In this paper, the successful application of the mf-CRF model in multi-modal image fusion (visible-infrared and medical) is also presented. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2019.2922097 |