Loading…

Conditional Random Field Model for Robust Multi-Focus Image Fusion

In this paper, a novel multi-focus image fusion algorithm based on conditional random field optimization (mf-CRF) is proposed. It is based on an unary term that includes the combined activity estimation of both high and low frequencies of the input images, while a spatially varying smoothness term i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2019-11, Vol.28 (11), p.5636-5648
Main Authors: Bouzos, Odysseas, Andreadis, Ioannis, Mitianoudis, Nikolaos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a novel multi-focus image fusion algorithm based on conditional random field optimization (mf-CRF) is proposed. It is based on an unary term that includes the combined activity estimation of both high and low frequencies of the input images, while a spatially varying smoothness term is introduced, in order to align the graph-cut solution with boundaries of focused and defocused pixels. The proposed model retains the advantages of both spatial-domain methods and multi-spectral methods and by solving an energy minimization problem and finds an optimal solution for the multi-focus image fusion problem. Experimental results demonstrate the effectiveness of the proposed method that outperforms current state-of-the-art multi-focus image fusion algorithms in both qualitative and quantitative comparisons. In this paper, the successful application of the mf-CRF model in multi-modal image fusion (visible-infrared and medical) is also presented.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2019.2922097