Loading…

Motion compensated lossy-to-lossless compression of 4-D medical images using integer wavelet transforms

This paper proposes a method for progressive lossy-to-lossless compression of four-dimensional (4-D) medical images (sequences of volumetric images over time) by using a combination of three-dimensional (3-D) integer wavelet transform (IWT) and 3-D motion compensation. A 3-D extension of the set-par...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2005-03, Vol.9 (1), p.132-138
Main Authors: Kassim, A.A., Pingkun Yan, Wei Siong Lee, Sengupta, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a method for progressive lossy-to-lossless compression of four-dimensional (4-D) medical images (sequences of volumetric images over time) by using a combination of three-dimensional (3-D) integer wavelet transform (IWT) and 3-D motion compensation. A 3-D extension of the set-partitioning in hierarchical trees (SPIHT) algorithm is employed for coding the wavelet coefficients. To effectively exploit the redundancy between consecutive 3-D images, the concepts of key and residual frames from video coding is used. A fast 3-D cube matching algorithm is employed to do motion estimation. The key and the residual volumes are then coded using 3-D IWT and the modified 3-D SPIHT. The experimental results presented in this paper show that our proposed compression scheme achieves better lossy and lossless compression performance on 4-D medical images when compared with JPEG-2000 and volumetric compression based on 3-D SPIHT.
ISSN:1089-7771
2168-2194
1558-0032
2168-2208
DOI:10.1109/TITB.2004.838376