Loading…
Classification of Seizure and Nonseizure EEG Signals Using Empirical Mode Decomposition
In this paper, we present a new method for classification of electroencephalogram (EEG) signals using empirical mode decomposition (EMD) method. The intrinsic mode functions (IMFs) generated by EMD method can be considered as a set of amplitude and frequency modulated (AM-FM) signals. The Hilbert tr...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2012-11, Vol.16 (6), p.1135-1142 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we present a new method for classification of electroencephalogram (EEG) signals using empirical mode decomposition (EMD) method. The intrinsic mode functions (IMFs) generated by EMD method can be considered as a set of amplitude and frequency modulated (AM-FM) signals. The Hilbert transformation of IMFs provides an analytic signal representation of the IMFs. The two bandwidths, namely amplitude modulation bandwidth ( B AM ) and frequency modulation bandwidth ( B FM ), computed from the analytic IMFs, have been used as an input to least squares support vector machine (LS-SVM) for classifying seizure and nonseizure EEG signals. The proposed method for classification of EEG signals based on the bandwidth features ( B AM and B FM ) and the LS-SVM has provided better classification accuracy than the method adopted by Liang and coworkers in their study published in 2010. The experimental results with the recorded EEG signals from a published dataset are included to show the effectiveness of the proposed method for EEG signal classification. |
---|---|
ISSN: | 1089-7771 2168-2194 1558-0032 2168-2208 |
DOI: | 10.1109/TITB.2011.2181403 |