Loading…

Driving Safety Risk Prediction Using Cost-Sensitive With Nonnegativity-Constrained Autoencoders Based on Imbalanced Naturalistic Driving Data

A large number of studies have shown that most vehicle collisions are caused by drivers' abnormal operations. To ensure the safety of all people on the road network as much as possible, it is crucial to be able to predict the drivers' driving safety risks in real time. In this paper, we pr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2019-12, Vol.20 (12), p.4450-4465
Main Authors: Chen, Jie, Wu, ZhongCheng, Zhang, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-a52c3f29165e86c6793e5e68472f688c5f798be77a9f1b24b5f0b09a742e7fa23
cites cdi_FETCH-LOGICAL-c293t-a52c3f29165e86c6793e5e68472f688c5f798be77a9f1b24b5f0b09a742e7fa23
container_end_page 4465
container_issue 12
container_start_page 4450
container_title IEEE transactions on intelligent transportation systems
container_volume 20
creator Chen, Jie
Wu, ZhongCheng
Zhang, Jun
description A large number of studies have shown that most vehicle collisions are caused by drivers' abnormal operations. To ensure the safety of all people on the road network as much as possible, it is crucial to be able to predict the drivers' driving safety risks in real time. In this paper, we propose a novel cost-sensitive L 1 /L 2 -nonnegativity-constrained deep autoencoder network for driving safety risk prediction. Unfortunately, with existing research methods, the size of the sliding time window is too large, the feature extraction is relatively subjective, and class imbalances occur, which leads to low identification accuracy, long prediction times, and poor applicability. We first propose using a three-layer L 1 /L 2 -nonnegativity-constrained autoencoder to adaptively search the optimal size of the sliding window and then construct a deep L 1 /L 2 -nonnegativity-constrained autoencoder network to automatically extract the hidden features of the driving behaviors. Finally, we build a new L 1 /L 2 -nonnegativityconstrained focal loss classifier to predict the driving behaviors under different safety risk levels. The results from the public 100-Car naturalistic driving study dataset indicate that our method can effectively find the optimal window size, reduce the data volume and reconstruction error, and extract more distinctive features. Furthermore, this method effectively curbs the class imbalance, improves the driving safety risk prediction performance, reduces overfitting, shortens the prediction time, and improves the timeliness.
doi_str_mv 10.1109/TITS.2018.2886280
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2018_2886280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8617709</ieee_id><sourcerecordid>2330024179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a52c3f29165e86c6793e5e68472f688c5f798be77a9f1b24b5f0b09a742e7fa23</originalsourceid><addsrcrecordid>eNo9UE1PAyEQJUYTtfoDjBcSz1uBXRY4av1qYtTYNh43LB0qWkGBNumP8D-7m6qnmXnz3pvJQ-iEkiGlRJ1Px9PJkBEqh0zKmkmygw4o57IghNa7fc-qQhFO9tFhSm8dWnFKD9D3VXRr5xd4oi3kDX526R0_RZg7k13weJb65SikXEzAJ5fdGvCLy6_4IXgPC90BLm-KUfApR-08zPHFKgfwJswhJnypUwd1TuOPVi-1N930oPMq6qVL2Rn898CVzvoI7Vm9THD8WwdodnM9Hd0V94-349HFfWGYKnOhOTOlZYrWHGRtaqFK4FDLSjBbS2m4FUq2IIRWlrasarklLVFaVAyE1awcoLOt72cMXytIuXkLq-i7kw0rS0JYRTvPAaJblokhpQi2-YzuQ8dNQ0nTp970qTd96s1v6p3mdKtxAPDPlzUVgqjyByABgF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330024179</pqid></control><display><type>article</type><title>Driving Safety Risk Prediction Using Cost-Sensitive With Nonnegativity-Constrained Autoencoders Based on Imbalanced Naturalistic Driving Data</title><source>IEEE Xplore (Online service)</source><creator>Chen, Jie ; Wu, ZhongCheng ; Zhang, Jun</creator><creatorcontrib>Chen, Jie ; Wu, ZhongCheng ; Zhang, Jun</creatorcontrib><description>A large number of studies have shown that most vehicle collisions are caused by drivers' abnormal operations. To ensure the safety of all people on the road network as much as possible, it is crucial to be able to predict the drivers' driving safety risks in real time. In this paper, we propose a novel cost-sensitive L 1 /L 2 -nonnegativity-constrained deep autoencoder network for driving safety risk prediction. Unfortunately, with existing research methods, the size of the sliding time window is too large, the feature extraction is relatively subjective, and class imbalances occur, which leads to low identification accuracy, long prediction times, and poor applicability. We first propose using a three-layer L 1 /L 2 -nonnegativity-constrained autoencoder to adaptively search the optimal size of the sliding window and then construct a deep L 1 /L 2 -nonnegativity-constrained autoencoder network to automatically extract the hidden features of the driving behaviors. Finally, we build a new L 1 /L 2 -nonnegativityconstrained focal loss classifier to predict the driving behaviors under different safety risk levels. The results from the public 100-Car naturalistic driving study dataset indicate that our method can effectively find the optimal window size, reduce the data volume and reconstruction error, and extract more distinctive features. Furthermore, this method effectively curbs the class imbalance, improves the driving safety risk prediction performance, reduces overfitting, shortens the prediction time, and improves the timeliness.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2018.2886280</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L 1/&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L 2-Nonnegativity-constrained autoencoder ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L 1/&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L 2-nonnegativity-constrained Focal Loss ; Accident reconstruction ; Accidents ; adaptive search ; Automobile safety ; class imbalance ; Computer crashes ; Drivers ; driving safety risk prediction ; Feature extraction ; naturalistic driving study ; Real-time systems ; Risk levels ; Roads ; Safety ; Sliding ; Time series analysis ; Vehicle safety ; Vehicles ; Windows (intervals)</subject><ispartof>IEEE transactions on intelligent transportation systems, 2019-12, Vol.20 (12), p.4450-4465</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a52c3f29165e86c6793e5e68472f688c5f798be77a9f1b24b5f0b09a742e7fa23</citedby><cites>FETCH-LOGICAL-c293t-a52c3f29165e86c6793e5e68472f688c5f798be77a9f1b24b5f0b09a742e7fa23</cites><orcidid>0000-0003-1321-6022 ; 0000-0002-9605-4331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8617709$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Wu, ZhongCheng</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><title>Driving Safety Risk Prediction Using Cost-Sensitive With Nonnegativity-Constrained Autoencoders Based on Imbalanced Naturalistic Driving Data</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>A large number of studies have shown that most vehicle collisions are caused by drivers' abnormal operations. To ensure the safety of all people on the road network as much as possible, it is crucial to be able to predict the drivers' driving safety risks in real time. In this paper, we propose a novel cost-sensitive L 1 /L 2 -nonnegativity-constrained deep autoencoder network for driving safety risk prediction. Unfortunately, with existing research methods, the size of the sliding time window is too large, the feature extraction is relatively subjective, and class imbalances occur, which leads to low identification accuracy, long prediction times, and poor applicability. We first propose using a three-layer L 1 /L 2 -nonnegativity-constrained autoencoder to adaptively search the optimal size of the sliding window and then construct a deep L 1 /L 2 -nonnegativity-constrained autoencoder network to automatically extract the hidden features of the driving behaviors. Finally, we build a new L 1 /L 2 -nonnegativityconstrained focal loss classifier to predict the driving behaviors under different safety risk levels. The results from the public 100-Car naturalistic driving study dataset indicate that our method can effectively find the optimal window size, reduce the data volume and reconstruction error, and extract more distinctive features. Furthermore, this method effectively curbs the class imbalance, improves the driving safety risk prediction performance, reduces overfitting, shortens the prediction time, and improves the timeliness.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L 1/&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L 2-Nonnegativity-constrained autoencoder</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L 1/&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L 2-nonnegativity-constrained Focal Loss</subject><subject>Accident reconstruction</subject><subject>Accidents</subject><subject>adaptive search</subject><subject>Automobile safety</subject><subject>class imbalance</subject><subject>Computer crashes</subject><subject>Drivers</subject><subject>driving safety risk prediction</subject><subject>Feature extraction</subject><subject>naturalistic driving study</subject><subject>Real-time systems</subject><subject>Risk levels</subject><subject>Roads</subject><subject>Safety</subject><subject>Sliding</subject><subject>Time series analysis</subject><subject>Vehicle safety</subject><subject>Vehicles</subject><subject>Windows (intervals)</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UE1PAyEQJUYTtfoDjBcSz1uBXRY4av1qYtTYNh43LB0qWkGBNumP8D-7m6qnmXnz3pvJQ-iEkiGlRJ1Px9PJkBEqh0zKmkmygw4o57IghNa7fc-qQhFO9tFhSm8dWnFKD9D3VXRr5xd4oi3kDX526R0_RZg7k13weJb65SikXEzAJ5fdGvCLy6_4IXgPC90BLm-KUfApR-08zPHFKgfwJswhJnypUwd1TuOPVi-1N930oPMq6qVL2Rn898CVzvoI7Vm9THD8WwdodnM9Hd0V94-349HFfWGYKnOhOTOlZYrWHGRtaqFK4FDLSjBbS2m4FUq2IIRWlrasarklLVFaVAyE1awcoLOt72cMXytIuXkLq-i7kw0rS0JYRTvPAaJblokhpQi2-YzuQ8dNQ0nTp970qTd96s1v6p3mdKtxAPDPlzUVgqjyByABgF0</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Chen, Jie</creator><creator>Wu, ZhongCheng</creator><creator>Zhang, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1321-6022</orcidid><orcidid>https://orcid.org/0000-0002-9605-4331</orcidid></search><sort><creationdate>20191201</creationdate><title>Driving Safety Risk Prediction Using Cost-Sensitive With Nonnegativity-Constrained Autoencoders Based on Imbalanced Naturalistic Driving Data</title><author>Chen, Jie ; Wu, ZhongCheng ; Zhang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a52c3f29165e86c6793e5e68472f688c5f798be77a9f1b24b5f0b09a742e7fa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L 1/&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L 2-Nonnegativity-constrained autoencoder</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L 1/&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L 2-nonnegativity-constrained Focal Loss</topic><topic>Accident reconstruction</topic><topic>Accidents</topic><topic>adaptive search</topic><topic>Automobile safety</topic><topic>class imbalance</topic><topic>Computer crashes</topic><topic>Drivers</topic><topic>driving safety risk prediction</topic><topic>Feature extraction</topic><topic>naturalistic driving study</topic><topic>Real-time systems</topic><topic>Risk levels</topic><topic>Roads</topic><topic>Safety</topic><topic>Sliding</topic><topic>Time series analysis</topic><topic>Vehicle safety</topic><topic>Vehicles</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Wu, ZhongCheng</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jie</au><au>Wu, ZhongCheng</au><au>Zhang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Driving Safety Risk Prediction Using Cost-Sensitive With Nonnegativity-Constrained Autoencoders Based on Imbalanced Naturalistic Driving Data</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>20</volume><issue>12</issue><spage>4450</spage><epage>4465</epage><pages>4450-4465</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>A large number of studies have shown that most vehicle collisions are caused by drivers' abnormal operations. To ensure the safety of all people on the road network as much as possible, it is crucial to be able to predict the drivers' driving safety risks in real time. In this paper, we propose a novel cost-sensitive L 1 /L 2 -nonnegativity-constrained deep autoencoder network for driving safety risk prediction. Unfortunately, with existing research methods, the size of the sliding time window is too large, the feature extraction is relatively subjective, and class imbalances occur, which leads to low identification accuracy, long prediction times, and poor applicability. We first propose using a three-layer L 1 /L 2 -nonnegativity-constrained autoencoder to adaptively search the optimal size of the sliding window and then construct a deep L 1 /L 2 -nonnegativity-constrained autoencoder network to automatically extract the hidden features of the driving behaviors. Finally, we build a new L 1 /L 2 -nonnegativityconstrained focal loss classifier to predict the driving behaviors under different safety risk levels. The results from the public 100-Car naturalistic driving study dataset indicate that our method can effectively find the optimal window size, reduce the data volume and reconstruction error, and extract more distinctive features. Furthermore, this method effectively curbs the class imbalance, improves the driving safety risk prediction performance, reduces overfitting, shortens the prediction time, and improves the timeliness.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2018.2886280</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1321-6022</orcidid><orcidid>https://orcid.org/0000-0002-9605-4331</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2019-12, Vol.20 (12), p.4450-4465
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2018_2886280
source IEEE Xplore (Online service)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L 1/<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L 2-Nonnegativity-constrained autoencoder
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L 1/<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L 2-nonnegativity-constrained Focal Loss
Accident reconstruction
Accidents
adaptive search
Automobile safety
class imbalance
Computer crashes
Drivers
driving safety risk prediction
Feature extraction
naturalistic driving study
Real-time systems
Risk levels
Roads
Safety
Sliding
Time series analysis
Vehicle safety
Vehicles
Windows (intervals)
title Driving Safety Risk Prediction Using Cost-Sensitive With Nonnegativity-Constrained Autoencoders Based on Imbalanced Naturalistic Driving Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Driving%20Safety%20Risk%20Prediction%20Using%20Cost-Sensitive%20With%20Nonnegativity-Constrained%20Autoencoders%20Based%20on%20Imbalanced%20Naturalistic%20Driving%20Data&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Chen,%20Jie&rft.date=2019-12-01&rft.volume=20&rft.issue=12&rft.spage=4450&rft.epage=4465&rft.pages=4450-4465&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2018.2886280&rft_dat=%3Cproquest_cross%3E2330024179%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-a52c3f29165e86c6793e5e68472f688c5f798be77a9f1b24b5f0b09a742e7fa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2330024179&rft_id=info:pmid/&rft_ieee_id=8617709&rfr_iscdi=true