Loading…

Traffic Sign Detection Under Challenging Conditions: A Deeper Look into Performance Variations and Spectral Characteristics

Traffic signs are critical for maintaining the safety and efficiency of our roads. Therefore, we need to carefully assess the capabilities and limitations of automated traffic sign detection systems. Existing traffic sign datasets are limited in terms of type and severity of challenging conditions....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2020-09, Vol.21 (9), p.3663-3673
Main Authors: Temel, Dogancan, Chen, Min-Hung, AlRegib, Ghassan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-6cffa0b1fba5bc45947bf7e1a8af6cc137841af5583ebfaa79da1634284398823
cites cdi_FETCH-LOGICAL-c293t-6cffa0b1fba5bc45947bf7e1a8af6cc137841af5583ebfaa79da1634284398823
container_end_page 3673
container_issue 9
container_start_page 3663
container_title IEEE transactions on intelligent transportation systems
container_volume 21
creator Temel, Dogancan
Chen, Min-Hung
AlRegib, Ghassan
description Traffic signs are critical for maintaining the safety and efficiency of our roads. Therefore, we need to carefully assess the capabilities and limitations of automated traffic sign detection systems. Existing traffic sign datasets are limited in terms of type and severity of challenging conditions. Metadata corresponding to these conditions are unavailable and it is not possible to investigate the effect of a single factor because of the simultaneous changes in numerous conditions. To overcome the shortcomings in existing datasets, we introduced the CURE-TSD-Real dataset, which is based on simulated challenging conditions that correspond to adversaries that can occur in real-world environments and systems. We test the performance of two benchmark algorithms and show that severe conditions can result in an average performance degradation of 29% in precision and 68% in recall. We investigate the effect of challenging conditions through spectral analysis and show that the challenging conditions can lead to distinct magnitude spectrum characteristics. Moreover, we show that mean magnitude spectrum of changes in video sequences under challenging conditions can be an indicator of detection performance. The CURE-TSD-Real dataset is available online at https://github.com/olivesgatech/CURE-TSD .
doi_str_mv 10.1109/TITS.2019.2931429
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2019_2931429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8793235</ieee_id><sourcerecordid>2438766176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6cffa0b1fba5bc45947bf7e1a8af6cc137841af5583ebfaa79da1634284398823</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRsFZ_gHgJeN6a2WQ_4q3Ur0JBoVuvy2ya1NQ2qcn2IP55s7Z4mmHmmXd43yS5BjoCoOKuntbzUUZBjDLBgGfiJBlAnlcppVCc9n3GU0Fzep5chLCOU54DDJKf2qPWRpK5WVnyoDolO-MsWdil8mTygZuNsitjV2Ti7NL0u3BPxpFUuwjMnPskxnaOvCmvnd-ilYq8ozf4hxK0SzLfRVGPm17Oo-yUN6EzMlwmZxo3QV0d6zBZPD3Wk5d09vo8nYxnqYxeurSQWiNtQbeYt5LngpetLhVghbqQElhZcUAdzTLVasRSLBEKxrOKM1FVGRsmtwfdnXdfexW6Zu323saXTcZZVRYFlEWk4EBJ70LwSjc7b7bovxugTZ9x02fc9Bk3x4zjzc3hxiil_vmqFCxjOfsFp2R53A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438766176</pqid></control><display><type>article</type><title>Traffic Sign Detection Under Challenging Conditions: A Deeper Look into Performance Variations and Spectral Characteristics</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Temel, Dogancan ; Chen, Min-Hung ; AlRegib, Ghassan</creator><creatorcontrib>Temel, Dogancan ; Chen, Min-Hung ; AlRegib, Ghassan</creatorcontrib><description>Traffic signs are critical for maintaining the safety and efficiency of our roads. Therefore, we need to carefully assess the capabilities and limitations of automated traffic sign detection systems. Existing traffic sign datasets are limited in terms of type and severity of challenging conditions. Metadata corresponding to these conditions are unavailable and it is not possible to investigate the effect of a single factor because of the simultaneous changes in numerous conditions. To overcome the shortcomings in existing datasets, we introduced the CURE-TSD-Real dataset, which is based on simulated challenging conditions that correspond to adversaries that can occur in real-world environments and systems. We test the performance of two benchmark algorithms and show that severe conditions can result in an average performance degradation of 29% in precision and 68% in recall. We investigate the effect of challenging conditions through spectral analysis and show that the challenging conditions can lead to distinct magnitude spectrum characteristics. Moreover, we show that mean magnitude spectrum of changes in video sequences under challenging conditions can be an indicator of detection performance. The CURE-TSD-Real dataset is available online at https://github.com/olivesgatech/CURE-TSD .</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2019.2931429</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autonomous vehicles ; Cameras ; challenging conditions dataset ; Computer simulation ; Datasets ; Detection algorithms ; Image color analysis ; Intelligent transportation systems ; Lenses ; machine learning ; magnitude spectrum ; Metadata ; Performance degradation ; Spectrum analysis ; Traffic control ; Traffic safety ; traffic sign detection and recognition ; Traffic signs ; Video sequences</subject><ispartof>IEEE transactions on intelligent transportation systems, 2020-09, Vol.21 (9), p.3663-3673</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6cffa0b1fba5bc45947bf7e1a8af6cc137841af5583ebfaa79da1634284398823</citedby><cites>FETCH-LOGICAL-c293t-6cffa0b1fba5bc45947bf7e1a8af6cc137841af5583ebfaa79da1634284398823</cites><orcidid>0000-0002-4046-3937 ; 0000-0001-6818-8001 ; 0000-0002-4892-1795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8793235$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Temel, Dogancan</creatorcontrib><creatorcontrib>Chen, Min-Hung</creatorcontrib><creatorcontrib>AlRegib, Ghassan</creatorcontrib><title>Traffic Sign Detection Under Challenging Conditions: A Deeper Look into Performance Variations and Spectral Characteristics</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Traffic signs are critical for maintaining the safety and efficiency of our roads. Therefore, we need to carefully assess the capabilities and limitations of automated traffic sign detection systems. Existing traffic sign datasets are limited in terms of type and severity of challenging conditions. Metadata corresponding to these conditions are unavailable and it is not possible to investigate the effect of a single factor because of the simultaneous changes in numerous conditions. To overcome the shortcomings in existing datasets, we introduced the CURE-TSD-Real dataset, which is based on simulated challenging conditions that correspond to adversaries that can occur in real-world environments and systems. We test the performance of two benchmark algorithms and show that severe conditions can result in an average performance degradation of 29% in precision and 68% in recall. We investigate the effect of challenging conditions through spectral analysis and show that the challenging conditions can lead to distinct magnitude spectrum characteristics. Moreover, we show that mean magnitude spectrum of changes in video sequences under challenging conditions can be an indicator of detection performance. The CURE-TSD-Real dataset is available online at https://github.com/olivesgatech/CURE-TSD .</description><subject>Algorithms</subject><subject>Autonomous vehicles</subject><subject>Cameras</subject><subject>challenging conditions dataset</subject><subject>Computer simulation</subject><subject>Datasets</subject><subject>Detection algorithms</subject><subject>Image color analysis</subject><subject>Intelligent transportation systems</subject><subject>Lenses</subject><subject>machine learning</subject><subject>magnitude spectrum</subject><subject>Metadata</subject><subject>Performance degradation</subject><subject>Spectrum analysis</subject><subject>Traffic control</subject><subject>Traffic safety</subject><subject>traffic sign detection and recognition</subject><subject>Traffic signs</subject><subject>Video sequences</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhhdRsFZ_gHgJeN6a2WQ_4q3Ur0JBoVuvy2ya1NQ2qcn2IP55s7Z4mmHmmXd43yS5BjoCoOKuntbzUUZBjDLBgGfiJBlAnlcppVCc9n3GU0Fzep5chLCOU54DDJKf2qPWRpK5WVnyoDolO-MsWdil8mTygZuNsitjV2Ti7NL0u3BPxpFUuwjMnPskxnaOvCmvnd-ilYq8ozf4hxK0SzLfRVGPm17Oo-yUN6EzMlwmZxo3QV0d6zBZPD3Wk5d09vo8nYxnqYxeurSQWiNtQbeYt5LngpetLhVghbqQElhZcUAdzTLVasRSLBEKxrOKM1FVGRsmtwfdnXdfexW6Zu323saXTcZZVRYFlEWk4EBJ70LwSjc7b7bovxugTZ9x02fc9Bk3x4zjzc3hxiil_vmqFCxjOfsFp2R53A</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Temel, Dogancan</creator><creator>Chen, Min-Hung</creator><creator>AlRegib, Ghassan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4046-3937</orcidid><orcidid>https://orcid.org/0000-0001-6818-8001</orcidid><orcidid>https://orcid.org/0000-0002-4892-1795</orcidid></search><sort><creationdate>20200901</creationdate><title>Traffic Sign Detection Under Challenging Conditions: A Deeper Look into Performance Variations and Spectral Characteristics</title><author>Temel, Dogancan ; Chen, Min-Hung ; AlRegib, Ghassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6cffa0b1fba5bc45947bf7e1a8af6cc137841af5583ebfaa79da1634284398823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Autonomous vehicles</topic><topic>Cameras</topic><topic>challenging conditions dataset</topic><topic>Computer simulation</topic><topic>Datasets</topic><topic>Detection algorithms</topic><topic>Image color analysis</topic><topic>Intelligent transportation systems</topic><topic>Lenses</topic><topic>machine learning</topic><topic>magnitude spectrum</topic><topic>Metadata</topic><topic>Performance degradation</topic><topic>Spectrum analysis</topic><topic>Traffic control</topic><topic>Traffic safety</topic><topic>traffic sign detection and recognition</topic><topic>Traffic signs</topic><topic>Video sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Temel, Dogancan</creatorcontrib><creatorcontrib>Chen, Min-Hung</creatorcontrib><creatorcontrib>AlRegib, Ghassan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Temel, Dogancan</au><au>Chen, Min-Hung</au><au>AlRegib, Ghassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traffic Sign Detection Under Challenging Conditions: A Deeper Look into Performance Variations and Spectral Characteristics</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>21</volume><issue>9</issue><spage>3663</spage><epage>3673</epage><pages>3663-3673</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Traffic signs are critical for maintaining the safety and efficiency of our roads. Therefore, we need to carefully assess the capabilities and limitations of automated traffic sign detection systems. Existing traffic sign datasets are limited in terms of type and severity of challenging conditions. Metadata corresponding to these conditions are unavailable and it is not possible to investigate the effect of a single factor because of the simultaneous changes in numerous conditions. To overcome the shortcomings in existing datasets, we introduced the CURE-TSD-Real dataset, which is based on simulated challenging conditions that correspond to adversaries that can occur in real-world environments and systems. We test the performance of two benchmark algorithms and show that severe conditions can result in an average performance degradation of 29% in precision and 68% in recall. We investigate the effect of challenging conditions through spectral analysis and show that the challenging conditions can lead to distinct magnitude spectrum characteristics. Moreover, we show that mean magnitude spectrum of changes in video sequences under challenging conditions can be an indicator of detection performance. The CURE-TSD-Real dataset is available online at https://github.com/olivesgatech/CURE-TSD .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2019.2931429</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4046-3937</orcidid><orcidid>https://orcid.org/0000-0001-6818-8001</orcidid><orcidid>https://orcid.org/0000-0002-4892-1795</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2020-09, Vol.21 (9), p.3663-3673
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2019_2931429
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Autonomous vehicles
Cameras
challenging conditions dataset
Computer simulation
Datasets
Detection algorithms
Image color analysis
Intelligent transportation systems
Lenses
machine learning
magnitude spectrum
Metadata
Performance degradation
Spectrum analysis
Traffic control
Traffic safety
traffic sign detection and recognition
Traffic signs
Video sequences
title Traffic Sign Detection Under Challenging Conditions: A Deeper Look into Performance Variations and Spectral Characteristics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traffic%20Sign%20Detection%20Under%20Challenging%20Conditions:%20A%20Deeper%20Look%20into%20Performance%20Variations%20and%20Spectral%20Characteristics&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Temel,%20Dogancan&rft.date=2020-09-01&rft.volume=21&rft.issue=9&rft.spage=3663&rft.epage=3673&rft.pages=3663-3673&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2019.2931429&rft_dat=%3Cproquest_cross%3E2438766176%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-6cffa0b1fba5bc45947bf7e1a8af6cc137841af5583ebfaa79da1634284398823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438766176&rft_id=info:pmid/&rft_ieee_id=8793235&rfr_iscdi=true