Loading…
Traffic Sign Detection Under Challenging Conditions: A Deeper Look into Performance Variations and Spectral Characteristics
Traffic signs are critical for maintaining the safety and efficiency of our roads. Therefore, we need to carefully assess the capabilities and limitations of automated traffic sign detection systems. Existing traffic sign datasets are limited in terms of type and severity of challenging conditions....
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2020-09, Vol.21 (9), p.3663-3673 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-6cffa0b1fba5bc45947bf7e1a8af6cc137841af5583ebfaa79da1634284398823 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-6cffa0b1fba5bc45947bf7e1a8af6cc137841af5583ebfaa79da1634284398823 |
container_end_page | 3673 |
container_issue | 9 |
container_start_page | 3663 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 21 |
creator | Temel, Dogancan Chen, Min-Hung AlRegib, Ghassan |
description | Traffic signs are critical for maintaining the safety and efficiency of our roads. Therefore, we need to carefully assess the capabilities and limitations of automated traffic sign detection systems. Existing traffic sign datasets are limited in terms of type and severity of challenging conditions. Metadata corresponding to these conditions are unavailable and it is not possible to investigate the effect of a single factor because of the simultaneous changes in numerous conditions. To overcome the shortcomings in existing datasets, we introduced the CURE-TSD-Real dataset, which is based on simulated challenging conditions that correspond to adversaries that can occur in real-world environments and systems. We test the performance of two benchmark algorithms and show that severe conditions can result in an average performance degradation of 29% in precision and 68% in recall. We investigate the effect of challenging conditions through spectral analysis and show that the challenging conditions can lead to distinct magnitude spectrum characteristics. Moreover, we show that mean magnitude spectrum of changes in video sequences under challenging conditions can be an indicator of detection performance. The CURE-TSD-Real dataset is available online at https://github.com/olivesgatech/CURE-TSD . |
doi_str_mv | 10.1109/TITS.2019.2931429 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2019_2931429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8793235</ieee_id><sourcerecordid>2438766176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6cffa0b1fba5bc45947bf7e1a8af6cc137841af5583ebfaa79da1634284398823</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRsFZ_gHgJeN6a2WQ_4q3Ur0JBoVuvy2ya1NQ2qcn2IP55s7Z4mmHmmXd43yS5BjoCoOKuntbzUUZBjDLBgGfiJBlAnlcppVCc9n3GU0Fzep5chLCOU54DDJKf2qPWRpK5WVnyoDolO-MsWdil8mTygZuNsitjV2Ti7NL0u3BPxpFUuwjMnPskxnaOvCmvnd-ilYq8ozf4hxK0SzLfRVGPm17Oo-yUN6EzMlwmZxo3QV0d6zBZPD3Wk5d09vo8nYxnqYxeurSQWiNtQbeYt5LngpetLhVghbqQElhZcUAdzTLVasRSLBEKxrOKM1FVGRsmtwfdnXdfexW6Zu323saXTcZZVRYFlEWk4EBJ70LwSjc7b7bovxugTZ9x02fc9Bk3x4zjzc3hxiil_vmqFCxjOfsFp2R53A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438766176</pqid></control><display><type>article</type><title>Traffic Sign Detection Under Challenging Conditions: A Deeper Look into Performance Variations and Spectral Characteristics</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Temel, Dogancan ; Chen, Min-Hung ; AlRegib, Ghassan</creator><creatorcontrib>Temel, Dogancan ; Chen, Min-Hung ; AlRegib, Ghassan</creatorcontrib><description>Traffic signs are critical for maintaining the safety and efficiency of our roads. Therefore, we need to carefully assess the capabilities and limitations of automated traffic sign detection systems. Existing traffic sign datasets are limited in terms of type and severity of challenging conditions. Metadata corresponding to these conditions are unavailable and it is not possible to investigate the effect of a single factor because of the simultaneous changes in numerous conditions. To overcome the shortcomings in existing datasets, we introduced the CURE-TSD-Real dataset, which is based on simulated challenging conditions that correspond to adversaries that can occur in real-world environments and systems. We test the performance of two benchmark algorithms and show that severe conditions can result in an average performance degradation of 29% in precision and 68% in recall. We investigate the effect of challenging conditions through spectral analysis and show that the challenging conditions can lead to distinct magnitude spectrum characteristics. Moreover, we show that mean magnitude spectrum of changes in video sequences under challenging conditions can be an indicator of detection performance. The CURE-TSD-Real dataset is available online at https://github.com/olivesgatech/CURE-TSD .</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2019.2931429</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autonomous vehicles ; Cameras ; challenging conditions dataset ; Computer simulation ; Datasets ; Detection algorithms ; Image color analysis ; Intelligent transportation systems ; Lenses ; machine learning ; magnitude spectrum ; Metadata ; Performance degradation ; Spectrum analysis ; Traffic control ; Traffic safety ; traffic sign detection and recognition ; Traffic signs ; Video sequences</subject><ispartof>IEEE transactions on intelligent transportation systems, 2020-09, Vol.21 (9), p.3663-3673</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6cffa0b1fba5bc45947bf7e1a8af6cc137841af5583ebfaa79da1634284398823</citedby><cites>FETCH-LOGICAL-c293t-6cffa0b1fba5bc45947bf7e1a8af6cc137841af5583ebfaa79da1634284398823</cites><orcidid>0000-0002-4046-3937 ; 0000-0001-6818-8001 ; 0000-0002-4892-1795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8793235$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Temel, Dogancan</creatorcontrib><creatorcontrib>Chen, Min-Hung</creatorcontrib><creatorcontrib>AlRegib, Ghassan</creatorcontrib><title>Traffic Sign Detection Under Challenging Conditions: A Deeper Look into Performance Variations and Spectral Characteristics</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Traffic signs are critical for maintaining the safety and efficiency of our roads. Therefore, we need to carefully assess the capabilities and limitations of automated traffic sign detection systems. Existing traffic sign datasets are limited in terms of type and severity of challenging conditions. Metadata corresponding to these conditions are unavailable and it is not possible to investigate the effect of a single factor because of the simultaneous changes in numerous conditions. To overcome the shortcomings in existing datasets, we introduced the CURE-TSD-Real dataset, which is based on simulated challenging conditions that correspond to adversaries that can occur in real-world environments and systems. We test the performance of two benchmark algorithms and show that severe conditions can result in an average performance degradation of 29% in precision and 68% in recall. We investigate the effect of challenging conditions through spectral analysis and show that the challenging conditions can lead to distinct magnitude spectrum characteristics. Moreover, we show that mean magnitude spectrum of changes in video sequences under challenging conditions can be an indicator of detection performance. The CURE-TSD-Real dataset is available online at https://github.com/olivesgatech/CURE-TSD .</description><subject>Algorithms</subject><subject>Autonomous vehicles</subject><subject>Cameras</subject><subject>challenging conditions dataset</subject><subject>Computer simulation</subject><subject>Datasets</subject><subject>Detection algorithms</subject><subject>Image color analysis</subject><subject>Intelligent transportation systems</subject><subject>Lenses</subject><subject>machine learning</subject><subject>magnitude spectrum</subject><subject>Metadata</subject><subject>Performance degradation</subject><subject>Spectrum analysis</subject><subject>Traffic control</subject><subject>Traffic safety</subject><subject>traffic sign detection and recognition</subject><subject>Traffic signs</subject><subject>Video sequences</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhhdRsFZ_gHgJeN6a2WQ_4q3Ur0JBoVuvy2ya1NQ2qcn2IP55s7Z4mmHmmXd43yS5BjoCoOKuntbzUUZBjDLBgGfiJBlAnlcppVCc9n3GU0Fzep5chLCOU54DDJKf2qPWRpK5WVnyoDolO-MsWdil8mTygZuNsitjV2Ti7NL0u3BPxpFUuwjMnPskxnaOvCmvnd-ilYq8ozf4hxK0SzLfRVGPm17Oo-yUN6EzMlwmZxo3QV0d6zBZPD3Wk5d09vo8nYxnqYxeurSQWiNtQbeYt5LngpetLhVghbqQElhZcUAdzTLVasRSLBEKxrOKM1FVGRsmtwfdnXdfexW6Zu323saXTcZZVRYFlEWk4EBJ70LwSjc7b7bovxugTZ9x02fc9Bk3x4zjzc3hxiil_vmqFCxjOfsFp2R53A</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Temel, Dogancan</creator><creator>Chen, Min-Hung</creator><creator>AlRegib, Ghassan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4046-3937</orcidid><orcidid>https://orcid.org/0000-0001-6818-8001</orcidid><orcidid>https://orcid.org/0000-0002-4892-1795</orcidid></search><sort><creationdate>20200901</creationdate><title>Traffic Sign Detection Under Challenging Conditions: A Deeper Look into Performance Variations and Spectral Characteristics</title><author>Temel, Dogancan ; Chen, Min-Hung ; AlRegib, Ghassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6cffa0b1fba5bc45947bf7e1a8af6cc137841af5583ebfaa79da1634284398823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Autonomous vehicles</topic><topic>Cameras</topic><topic>challenging conditions dataset</topic><topic>Computer simulation</topic><topic>Datasets</topic><topic>Detection algorithms</topic><topic>Image color analysis</topic><topic>Intelligent transportation systems</topic><topic>Lenses</topic><topic>machine learning</topic><topic>magnitude spectrum</topic><topic>Metadata</topic><topic>Performance degradation</topic><topic>Spectrum analysis</topic><topic>Traffic control</topic><topic>Traffic safety</topic><topic>traffic sign detection and recognition</topic><topic>Traffic signs</topic><topic>Video sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Temel, Dogancan</creatorcontrib><creatorcontrib>Chen, Min-Hung</creatorcontrib><creatorcontrib>AlRegib, Ghassan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Temel, Dogancan</au><au>Chen, Min-Hung</au><au>AlRegib, Ghassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traffic Sign Detection Under Challenging Conditions: A Deeper Look into Performance Variations and Spectral Characteristics</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>21</volume><issue>9</issue><spage>3663</spage><epage>3673</epage><pages>3663-3673</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Traffic signs are critical for maintaining the safety and efficiency of our roads. Therefore, we need to carefully assess the capabilities and limitations of automated traffic sign detection systems. Existing traffic sign datasets are limited in terms of type and severity of challenging conditions. Metadata corresponding to these conditions are unavailable and it is not possible to investigate the effect of a single factor because of the simultaneous changes in numerous conditions. To overcome the shortcomings in existing datasets, we introduced the CURE-TSD-Real dataset, which is based on simulated challenging conditions that correspond to adversaries that can occur in real-world environments and systems. We test the performance of two benchmark algorithms and show that severe conditions can result in an average performance degradation of 29% in precision and 68% in recall. We investigate the effect of challenging conditions through spectral analysis and show that the challenging conditions can lead to distinct magnitude spectrum characteristics. Moreover, we show that mean magnitude spectrum of changes in video sequences under challenging conditions can be an indicator of detection performance. The CURE-TSD-Real dataset is available online at https://github.com/olivesgatech/CURE-TSD .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2019.2931429</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4046-3937</orcidid><orcidid>https://orcid.org/0000-0001-6818-8001</orcidid><orcidid>https://orcid.org/0000-0002-4892-1795</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2020-09, Vol.21 (9), p.3663-3673 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2019_2931429 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Autonomous vehicles Cameras challenging conditions dataset Computer simulation Datasets Detection algorithms Image color analysis Intelligent transportation systems Lenses machine learning magnitude spectrum Metadata Performance degradation Spectrum analysis Traffic control Traffic safety traffic sign detection and recognition Traffic signs Video sequences |
title | Traffic Sign Detection Under Challenging Conditions: A Deeper Look into Performance Variations and Spectral Characteristics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traffic%20Sign%20Detection%20Under%20Challenging%20Conditions:%20A%20Deeper%20Look%20into%20Performance%20Variations%20and%20Spectral%20Characteristics&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Temel,%20Dogancan&rft.date=2020-09-01&rft.volume=21&rft.issue=9&rft.spage=3663&rft.epage=3673&rft.pages=3663-3673&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2019.2931429&rft_dat=%3Cproquest_cross%3E2438766176%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-6cffa0b1fba5bc45947bf7e1a8af6cc137841af5583ebfaa79da1634284398823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2438766176&rft_id=info:pmid/&rft_ieee_id=8793235&rfr_iscdi=true |