Loading…

Resilient Cooperative Adaptive Cruise Control for Autonomous Vehicles Using Machine Learning

Cooperative Adaptive Cruise Control (CACC) is a fundamental connected vehicle application that extends Adaptive Cruise Control by exploiting vehicle-to-vehicle (V2V) communication. CACC is a crucial ingredient for numerous autonomous vehicle functionalities including platooning, distributed route ma...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2022-09, Vol.23 (9), p.15655-15672
Main Authors: Boddupalli, Srivalli, Rao, Akash Someshwar, Ray, Sandip
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-9b50781440d7e16c28dd4acdc3fe00f7ccc90fdc6c98583747dd96bf85dfffed3
cites cdi_FETCH-LOGICAL-c293t-9b50781440d7e16c28dd4acdc3fe00f7ccc90fdc6c98583747dd96bf85dfffed3
container_end_page 15672
container_issue 9
container_start_page 15655
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Boddupalli, Srivalli
Rao, Akash Someshwar
Ray, Sandip
description Cooperative Adaptive Cruise Control (CACC) is a fundamental connected vehicle application that extends Adaptive Cruise Control by exploiting vehicle-to-vehicle (V2V) communication. CACC is a crucial ingredient for numerous autonomous vehicle functionalities including platooning, distributed route management, etc. Unfortunately, malicious V2V communications can subvert CACC, leading to string instability and road accidents. In this paper, we develop a novel resiliency infrastructure, RACCON, for detecting and mitigating V2V attacks on CACC. RACCON uses machine learning to develop an on-board prediction model that captures anomalous vehicular responses and performs mitigation in real time. RACCON-enabled vehicles can exploit the high efficiency of CACC without compromising safety, even under potentially adversarial scenarios. We present extensive experimental evaluation to demonstrate the efficacy of RACCON.
doi_str_mv 10.1109/TITS.2022.3144599
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2022_3144599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9700787</ieee_id><sourcerecordid>2714900516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9b50781440d7e16c28dd4acdc3fe00f7ccc90fdc6c98583747dd96bf85dfffed3</originalsourceid><addsrcrecordid>eNo9UN9LwzAYDKLgnP4B4kvA586kbZrmcRR_DCaCbj4JoUu-uIyuqUkr-N-buuHTHcfd9x2H0DUlM0qJuFstVm-zlKTpLKN5zoQ4QRPKWJkQQovTkad5Iggj5-gihF1Uc0bpBH28QrCNhbbHlXMd-Lq334Dnuu7-SOUHGyK4tveuwcZ5PB9617q9GwJ-h61VDQS8Drb9xM-12toW8BJq30bhEp2ZuglwdcQpWj_cr6qnZPnyuKjmy0SlIusTsWGEl7E20RxoodJS67xWWmUGCDFcKSWI0apQomRlxnOutSg2pmTaGAM6m6Lbw93Ou68BQi93bvBtfClTTnNBCKNFdNGDS3kXggcjO2_3tf-RlMhxRDmOKMcR5XHEmLk5ZCwA_PsFJ7Ewz34BIF1vfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714900516</pqid></control><display><type>article</type><title>Resilient Cooperative Adaptive Cruise Control for Autonomous Vehicles Using Machine Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Boddupalli, Srivalli ; Rao, Akash Someshwar ; Ray, Sandip</creator><creatorcontrib>Boddupalli, Srivalli ; Rao, Akash Someshwar ; Ray, Sandip</creatorcontrib><description>Cooperative Adaptive Cruise Control (CACC) is a fundamental connected vehicle application that extends Adaptive Cruise Control by exploiting vehicle-to-vehicle (V2V) communication. CACC is a crucial ingredient for numerous autonomous vehicle functionalities including platooning, distributed route management, etc. Unfortunately, malicious V2V communications can subvert CACC, leading to string instability and road accidents. In this paper, we develop a novel resiliency infrastructure, RACCON, for detecting and mitigating V2V attacks on CACC. RACCON uses machine learning to develop an on-board prediction model that captures anomalous vehicular responses and performs mitigation in real time. RACCON-enabled vehicles can exploit the high efficiency of CACC without compromising safety, even under potentially adversarial scenarios. We present extensive experimental evaluation to demonstrate the efficacy of RACCON.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3144599</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Anomaly detection ; Connected and autonomous vehicles ; Connected vehicles ; Cooperative control ; Cruise control ; Machine learning ; Platooning ; Prediction models ; Reliability engineering ; Resilience ; Security ; Traffic accidents ; V2X communication ; Vehicle-to-everything ; Vehicular ad hoc networks</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-09, Vol.23 (9), p.15655-15672</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9b50781440d7e16c28dd4acdc3fe00f7ccc90fdc6c98583747dd96bf85dfffed3</citedby><cites>FETCH-LOGICAL-c293t-9b50781440d7e16c28dd4acdc3fe00f7ccc90fdc6c98583747dd96bf85dfffed3</cites><orcidid>0000-0003-1369-9458 ; 0000-0002-8671-5052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9700787$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Boddupalli, Srivalli</creatorcontrib><creatorcontrib>Rao, Akash Someshwar</creatorcontrib><creatorcontrib>Ray, Sandip</creatorcontrib><title>Resilient Cooperative Adaptive Cruise Control for Autonomous Vehicles Using Machine Learning</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Cooperative Adaptive Cruise Control (CACC) is a fundamental connected vehicle application that extends Adaptive Cruise Control by exploiting vehicle-to-vehicle (V2V) communication. CACC is a crucial ingredient for numerous autonomous vehicle functionalities including platooning, distributed route management, etc. Unfortunately, malicious V2V communications can subvert CACC, leading to string instability and road accidents. In this paper, we develop a novel resiliency infrastructure, RACCON, for detecting and mitigating V2V attacks on CACC. RACCON uses machine learning to develop an on-board prediction model that captures anomalous vehicular responses and performs mitigation in real time. RACCON-enabled vehicles can exploit the high efficiency of CACC without compromising safety, even under potentially adversarial scenarios. We present extensive experimental evaluation to demonstrate the efficacy of RACCON.</description><subject>Adaptive control</subject><subject>Anomaly detection</subject><subject>Connected and autonomous vehicles</subject><subject>Connected vehicles</subject><subject>Cooperative control</subject><subject>Cruise control</subject><subject>Machine learning</subject><subject>Platooning</subject><subject>Prediction models</subject><subject>Reliability engineering</subject><subject>Resilience</subject><subject>Security</subject><subject>Traffic accidents</subject><subject>V2X communication</subject><subject>Vehicle-to-everything</subject><subject>Vehicular ad hoc networks</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9UN9LwzAYDKLgnP4B4kvA586kbZrmcRR_DCaCbj4JoUu-uIyuqUkr-N-buuHTHcfd9x2H0DUlM0qJuFstVm-zlKTpLKN5zoQ4QRPKWJkQQovTkad5Iggj5-gihF1Uc0bpBH28QrCNhbbHlXMd-Lq334Dnuu7-SOUHGyK4tveuwcZ5PB9617q9GwJ-h61VDQS8Drb9xM-12toW8BJq30bhEp2ZuglwdcQpWj_cr6qnZPnyuKjmy0SlIusTsWGEl7E20RxoodJS67xWWmUGCDFcKSWI0apQomRlxnOutSg2pmTaGAM6m6Lbw93Ou68BQi93bvBtfClTTnNBCKNFdNGDS3kXggcjO2_3tf-RlMhxRDmOKMcR5XHEmLk5ZCwA_PsFJ7Ewz34BIF1vfQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Boddupalli, Srivalli</creator><creator>Rao, Akash Someshwar</creator><creator>Ray, Sandip</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1369-9458</orcidid><orcidid>https://orcid.org/0000-0002-8671-5052</orcidid></search><sort><creationdate>20220901</creationdate><title>Resilient Cooperative Adaptive Cruise Control for Autonomous Vehicles Using Machine Learning</title><author>Boddupalli, Srivalli ; Rao, Akash Someshwar ; Ray, Sandip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9b50781440d7e16c28dd4acdc3fe00f7ccc90fdc6c98583747dd96bf85dfffed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive control</topic><topic>Anomaly detection</topic><topic>Connected and autonomous vehicles</topic><topic>Connected vehicles</topic><topic>Cooperative control</topic><topic>Cruise control</topic><topic>Machine learning</topic><topic>Platooning</topic><topic>Prediction models</topic><topic>Reliability engineering</topic><topic>Resilience</topic><topic>Security</topic><topic>Traffic accidents</topic><topic>V2X communication</topic><topic>Vehicle-to-everything</topic><topic>Vehicular ad hoc networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boddupalli, Srivalli</creatorcontrib><creatorcontrib>Rao, Akash Someshwar</creatorcontrib><creatorcontrib>Ray, Sandip</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boddupalli, Srivalli</au><au>Rao, Akash Someshwar</au><au>Ray, Sandip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resilient Cooperative Adaptive Cruise Control for Autonomous Vehicles Using Machine Learning</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>23</volume><issue>9</issue><spage>15655</spage><epage>15672</epage><pages>15655-15672</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Cooperative Adaptive Cruise Control (CACC) is a fundamental connected vehicle application that extends Adaptive Cruise Control by exploiting vehicle-to-vehicle (V2V) communication. CACC is a crucial ingredient for numerous autonomous vehicle functionalities including platooning, distributed route management, etc. Unfortunately, malicious V2V communications can subvert CACC, leading to string instability and road accidents. In this paper, we develop a novel resiliency infrastructure, RACCON, for detecting and mitigating V2V attacks on CACC. RACCON uses machine learning to develop an on-board prediction model that captures anomalous vehicular responses and performs mitigation in real time. RACCON-enabled vehicles can exploit the high efficiency of CACC without compromising safety, even under potentially adversarial scenarios. We present extensive experimental evaluation to demonstrate the efficacy of RACCON.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3144599</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1369-9458</orcidid><orcidid>https://orcid.org/0000-0002-8671-5052</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-09, Vol.23 (9), p.15655-15672
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2022_3144599
source IEEE Electronic Library (IEL) Journals
subjects Adaptive control
Anomaly detection
Connected and autonomous vehicles
Connected vehicles
Cooperative control
Cruise control
Machine learning
Platooning
Prediction models
Reliability engineering
Resilience
Security
Traffic accidents
V2X communication
Vehicle-to-everything
Vehicular ad hoc networks
title Resilient Cooperative Adaptive Cruise Control for Autonomous Vehicles Using Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resilient%20Cooperative%20Adaptive%20Cruise%20Control%20for%20Autonomous%20Vehicles%20Using%20Machine%20Learning&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Boddupalli,%20Srivalli&rft.date=2022-09-01&rft.volume=23&rft.issue=9&rft.spage=15655&rft.epage=15672&rft.pages=15655-15672&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3144599&rft_dat=%3Cproquest_cross%3E2714900516%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-9b50781440d7e16c28dd4acdc3fe00f7ccc90fdc6c98583747dd96bf85dfffed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2714900516&rft_id=info:pmid/&rft_ieee_id=9700787&rfr_iscdi=true