Loading…
Resilient Cooperative Adaptive Cruise Control for Autonomous Vehicles Using Machine Learning
Cooperative Adaptive Cruise Control (CACC) is a fundamental connected vehicle application that extends Adaptive Cruise Control by exploiting vehicle-to-vehicle (V2V) communication. CACC is a crucial ingredient for numerous autonomous vehicle functionalities including platooning, distributed route ma...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2022-09, Vol.23 (9), p.15655-15672 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-9b50781440d7e16c28dd4acdc3fe00f7ccc90fdc6c98583747dd96bf85dfffed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-9b50781440d7e16c28dd4acdc3fe00f7ccc90fdc6c98583747dd96bf85dfffed3 |
container_end_page | 15672 |
container_issue | 9 |
container_start_page | 15655 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 23 |
creator | Boddupalli, Srivalli Rao, Akash Someshwar Ray, Sandip |
description | Cooperative Adaptive Cruise Control (CACC) is a fundamental connected vehicle application that extends Adaptive Cruise Control by exploiting vehicle-to-vehicle (V2V) communication. CACC is a crucial ingredient for numerous autonomous vehicle functionalities including platooning, distributed route management, etc. Unfortunately, malicious V2V communications can subvert CACC, leading to string instability and road accidents. In this paper, we develop a novel resiliency infrastructure, RACCON, for detecting and mitigating V2V attacks on CACC. RACCON uses machine learning to develop an on-board prediction model that captures anomalous vehicular responses and performs mitigation in real time. RACCON-enabled vehicles can exploit the high efficiency of CACC without compromising safety, even under potentially adversarial scenarios. We present extensive experimental evaluation to demonstrate the efficacy of RACCON. |
doi_str_mv | 10.1109/TITS.2022.3144599 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2022_3144599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9700787</ieee_id><sourcerecordid>2714900516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9b50781440d7e16c28dd4acdc3fe00f7ccc90fdc6c98583747dd96bf85dfffed3</originalsourceid><addsrcrecordid>eNo9UN9LwzAYDKLgnP4B4kvA586kbZrmcRR_DCaCbj4JoUu-uIyuqUkr-N-buuHTHcfd9x2H0DUlM0qJuFstVm-zlKTpLKN5zoQ4QRPKWJkQQovTkad5Iggj5-gihF1Uc0bpBH28QrCNhbbHlXMd-Lq334Dnuu7-SOUHGyK4tveuwcZ5PB9617q9GwJ-h61VDQS8Drb9xM-12toW8BJq30bhEp2ZuglwdcQpWj_cr6qnZPnyuKjmy0SlIusTsWGEl7E20RxoodJS67xWWmUGCDFcKSWI0apQomRlxnOutSg2pmTaGAM6m6Lbw93Ou68BQi93bvBtfClTTnNBCKNFdNGDS3kXggcjO2_3tf-RlMhxRDmOKMcR5XHEmLk5ZCwA_PsFJ7Ewz34BIF1vfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714900516</pqid></control><display><type>article</type><title>Resilient Cooperative Adaptive Cruise Control for Autonomous Vehicles Using Machine Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Boddupalli, Srivalli ; Rao, Akash Someshwar ; Ray, Sandip</creator><creatorcontrib>Boddupalli, Srivalli ; Rao, Akash Someshwar ; Ray, Sandip</creatorcontrib><description>Cooperative Adaptive Cruise Control (CACC) is a fundamental connected vehicle application that extends Adaptive Cruise Control by exploiting vehicle-to-vehicle (V2V) communication. CACC is a crucial ingredient for numerous autonomous vehicle functionalities including platooning, distributed route management, etc. Unfortunately, malicious V2V communications can subvert CACC, leading to string instability and road accidents. In this paper, we develop a novel resiliency infrastructure, RACCON, for detecting and mitigating V2V attacks on CACC. RACCON uses machine learning to develop an on-board prediction model that captures anomalous vehicular responses and performs mitigation in real time. RACCON-enabled vehicles can exploit the high efficiency of CACC without compromising safety, even under potentially adversarial scenarios. We present extensive experimental evaluation to demonstrate the efficacy of RACCON.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3144599</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Anomaly detection ; Connected and autonomous vehicles ; Connected vehicles ; Cooperative control ; Cruise control ; Machine learning ; Platooning ; Prediction models ; Reliability engineering ; Resilience ; Security ; Traffic accidents ; V2X communication ; Vehicle-to-everything ; Vehicular ad hoc networks</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-09, Vol.23 (9), p.15655-15672</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9b50781440d7e16c28dd4acdc3fe00f7ccc90fdc6c98583747dd96bf85dfffed3</citedby><cites>FETCH-LOGICAL-c293t-9b50781440d7e16c28dd4acdc3fe00f7ccc90fdc6c98583747dd96bf85dfffed3</cites><orcidid>0000-0003-1369-9458 ; 0000-0002-8671-5052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9700787$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Boddupalli, Srivalli</creatorcontrib><creatorcontrib>Rao, Akash Someshwar</creatorcontrib><creatorcontrib>Ray, Sandip</creatorcontrib><title>Resilient Cooperative Adaptive Cruise Control for Autonomous Vehicles Using Machine Learning</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Cooperative Adaptive Cruise Control (CACC) is a fundamental connected vehicle application that extends Adaptive Cruise Control by exploiting vehicle-to-vehicle (V2V) communication. CACC is a crucial ingredient for numerous autonomous vehicle functionalities including platooning, distributed route management, etc. Unfortunately, malicious V2V communications can subvert CACC, leading to string instability and road accidents. In this paper, we develop a novel resiliency infrastructure, RACCON, for detecting and mitigating V2V attacks on CACC. RACCON uses machine learning to develop an on-board prediction model that captures anomalous vehicular responses and performs mitigation in real time. RACCON-enabled vehicles can exploit the high efficiency of CACC without compromising safety, even under potentially adversarial scenarios. We present extensive experimental evaluation to demonstrate the efficacy of RACCON.</description><subject>Adaptive control</subject><subject>Anomaly detection</subject><subject>Connected and autonomous vehicles</subject><subject>Connected vehicles</subject><subject>Cooperative control</subject><subject>Cruise control</subject><subject>Machine learning</subject><subject>Platooning</subject><subject>Prediction models</subject><subject>Reliability engineering</subject><subject>Resilience</subject><subject>Security</subject><subject>Traffic accidents</subject><subject>V2X communication</subject><subject>Vehicle-to-everything</subject><subject>Vehicular ad hoc networks</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9UN9LwzAYDKLgnP4B4kvA586kbZrmcRR_DCaCbj4JoUu-uIyuqUkr-N-buuHTHcfd9x2H0DUlM0qJuFstVm-zlKTpLKN5zoQ4QRPKWJkQQovTkad5Iggj5-gihF1Uc0bpBH28QrCNhbbHlXMd-Lq334Dnuu7-SOUHGyK4tveuwcZ5PB9617q9GwJ-h61VDQS8Drb9xM-12toW8BJq30bhEp2ZuglwdcQpWj_cr6qnZPnyuKjmy0SlIusTsWGEl7E20RxoodJS67xWWmUGCDFcKSWI0apQomRlxnOutSg2pmTaGAM6m6Lbw93Ou68BQi93bvBtfClTTnNBCKNFdNGDS3kXggcjO2_3tf-RlMhxRDmOKMcR5XHEmLk5ZCwA_PsFJ7Ewz34BIF1vfQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Boddupalli, Srivalli</creator><creator>Rao, Akash Someshwar</creator><creator>Ray, Sandip</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1369-9458</orcidid><orcidid>https://orcid.org/0000-0002-8671-5052</orcidid></search><sort><creationdate>20220901</creationdate><title>Resilient Cooperative Adaptive Cruise Control for Autonomous Vehicles Using Machine Learning</title><author>Boddupalli, Srivalli ; Rao, Akash Someshwar ; Ray, Sandip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9b50781440d7e16c28dd4acdc3fe00f7ccc90fdc6c98583747dd96bf85dfffed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive control</topic><topic>Anomaly detection</topic><topic>Connected and autonomous vehicles</topic><topic>Connected vehicles</topic><topic>Cooperative control</topic><topic>Cruise control</topic><topic>Machine learning</topic><topic>Platooning</topic><topic>Prediction models</topic><topic>Reliability engineering</topic><topic>Resilience</topic><topic>Security</topic><topic>Traffic accidents</topic><topic>V2X communication</topic><topic>Vehicle-to-everything</topic><topic>Vehicular ad hoc networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boddupalli, Srivalli</creatorcontrib><creatorcontrib>Rao, Akash Someshwar</creatorcontrib><creatorcontrib>Ray, Sandip</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boddupalli, Srivalli</au><au>Rao, Akash Someshwar</au><au>Ray, Sandip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resilient Cooperative Adaptive Cruise Control for Autonomous Vehicles Using Machine Learning</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>23</volume><issue>9</issue><spage>15655</spage><epage>15672</epage><pages>15655-15672</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Cooperative Adaptive Cruise Control (CACC) is a fundamental connected vehicle application that extends Adaptive Cruise Control by exploiting vehicle-to-vehicle (V2V) communication. CACC is a crucial ingredient for numerous autonomous vehicle functionalities including platooning, distributed route management, etc. Unfortunately, malicious V2V communications can subvert CACC, leading to string instability and road accidents. In this paper, we develop a novel resiliency infrastructure, RACCON, for detecting and mitigating V2V attacks on CACC. RACCON uses machine learning to develop an on-board prediction model that captures anomalous vehicular responses and performs mitigation in real time. RACCON-enabled vehicles can exploit the high efficiency of CACC without compromising safety, even under potentially adversarial scenarios. We present extensive experimental evaluation to demonstrate the efficacy of RACCON.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3144599</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1369-9458</orcidid><orcidid>https://orcid.org/0000-0002-8671-5052</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2022-09, Vol.23 (9), p.15655-15672 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2022_3144599 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptive control Anomaly detection Connected and autonomous vehicles Connected vehicles Cooperative control Cruise control Machine learning Platooning Prediction models Reliability engineering Resilience Security Traffic accidents V2X communication Vehicle-to-everything Vehicular ad hoc networks |
title | Resilient Cooperative Adaptive Cruise Control for Autonomous Vehicles Using Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resilient%20Cooperative%20Adaptive%20Cruise%20Control%20for%20Autonomous%20Vehicles%20Using%20Machine%20Learning&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Boddupalli,%20Srivalli&rft.date=2022-09-01&rft.volume=23&rft.issue=9&rft.spage=15655&rft.epage=15672&rft.pages=15655-15672&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3144599&rft_dat=%3Cproquest_cross%3E2714900516%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-9b50781440d7e16c28dd4acdc3fe00f7ccc90fdc6c98583747dd96bf85dfffed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2714900516&rft_id=info:pmid/&rft_ieee_id=9700787&rfr_iscdi=true |