Loading…

A Privacy-Preserving Solution for Intelligent Transportation Systems: Private Driver DNA

The rising connection of vehicles with the road infrastructure enables the creation of data-driven applications to offer drivers customized services. At the same time, these opportunities require innovative solutions to protect the drivers' privacy in a complex environment like an Intelligent T...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2023-01, Vol.24 (1), p.258-273
Main Authors: Costantino, Gianpiero, De Vincenzi, Marco, Martinelli, Fabio, Matteucci, Ilaria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-1be334f297a91176c7e1aeedfb74441490401845f00248f8d81b066ada330b143
cites cdi_FETCH-LOGICAL-c336t-1be334f297a91176c7e1aeedfb74441490401845f00248f8d81b066ada330b143
container_end_page 273
container_issue 1
container_start_page 258
container_title IEEE transactions on intelligent transportation systems
container_volume 24
creator Costantino, Gianpiero
De Vincenzi, Marco
Martinelli, Fabio
Matteucci, Ilaria
description The rising connection of vehicles with the road infrastructure enables the creation of data-driven applications to offer drivers customized services. At the same time, these opportunities require innovative solutions to protect the drivers' privacy in a complex environment like an Intelligent Transportation System (ITS). This need is even more relevant when data are used to retrieve personal behaviors or attitudes. In our work, we propose a privacy-preserving solution, called Private Driver DNA, which designs a possible architecture, allowing drivers of an ITS to receive customized services. The proposed solution is based on the concept of Driver DNA as characterization of driver's driving style. To assure privacy, we perform the operations directly on sanitized data, using the Order Revealing Encryption (ORE) method. Besides, the proposed solution is integrated with ITS architecture defined in the European project E-Corridor. The result is an effective privacy-preserving architecture for ITS to offer customized products, which can be used to address drivers' behaviors, for example, to environmental-friendly attitudes or a more safe driving style. We test Private Driver DNA using a synthetic dataset generated with the vehicle simulator CARLA. We compare ORE with another encryption method like Homomorphic Encryption (HE) and some other privacy-preserving schemas. Besides, we quantify privacy gain and data loss utility after the data sanitization process.
doi_str_mv 10.1109/TITS.2022.3217358
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2022_3217358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9945656</ieee_id><sourcerecordid>2770779021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-1be334f297a91176c7e1aeedfb74441490401845f00248f8d81b066ada330b143</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsFZ_gPgS8Dl1Zy_ZrG-l9VIoWmgE35ZNOikpaVJ3t4X-exNbfDrDzDln4CPkHugIgOqnbJYtR4wyNuIMFJfpBRmAlGlMKSSX_cxErKmk1-TG-023FRJgQL7H0cJVB1sc44VDj-5QNeto2db7ULVNVLYumjUB67paYxOizNnG71oX7N95efQBt_751BEwmnaKLpp-jG_JVWlrj3dnHZKv15ds8h7PP99mk_E8LjhPQgw5ci5KppXVACopFIJFXJW5EkKA0FRQSIUsKWUiLdNVCjlNEruynNMcBB-Sx1PvzrU_e_TBbNq9a7qXhilFldKUQeeCk6twrfcOS7Nz1da6owFqeoCmB2h6gOYMsMs8nDIVIv77tRYykQn_Bc9Ea8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770779021</pqid></control><display><type>article</type><title>A Privacy-Preserving Solution for Intelligent Transportation Systems: Private Driver DNA</title><source>IEEE Xplore (Online service)</source><creator>Costantino, Gianpiero ; De Vincenzi, Marco ; Martinelli, Fabio ; Matteucci, Ilaria</creator><creatorcontrib>Costantino, Gianpiero ; De Vincenzi, Marco ; Martinelli, Fabio ; Matteucci, Ilaria</creatorcontrib><description>The rising connection of vehicles with the road infrastructure enables the creation of data-driven applications to offer drivers customized services. At the same time, these opportunities require innovative solutions to protect the drivers' privacy in a complex environment like an Intelligent Transportation System (ITS). This need is even more relevant when data are used to retrieve personal behaviors or attitudes. In our work, we propose a privacy-preserving solution, called Private Driver DNA, which designs a possible architecture, allowing drivers of an ITS to receive customized services. The proposed solution is based on the concept of Driver DNA as characterization of driver's driving style. To assure privacy, we perform the operations directly on sanitized data, using the Order Revealing Encryption (ORE) method. Besides, the proposed solution is integrated with ITS architecture defined in the European project E-Corridor. The result is an effective privacy-preserving architecture for ITS to offer customized products, which can be used to address drivers' behaviors, for example, to environmental-friendly attitudes or a more safe driving style. We test Private Driver DNA using a synthetic dataset generated with the vehicle simulator CARLA. We compare ORE with another encryption method like Homomorphic Encryption (HE) and some other privacy-preserving schemas. Besides, we quantify privacy gain and data loss utility after the data sanitization process.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3217358</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attitudes ; Authentication ; Blockchains ; Customization ; Data loss ; Data privacy ; DNA ; Driver behavior ; driver DNA ; homomorphic encryption ; Intelligent transportation systems ; ITS ; Measurement ; order revealing encryption ; Privacy ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2023-01, Vol.24 (1), p.258-273</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-1be334f297a91176c7e1aeedfb74441490401845f00248f8d81b066ada330b143</citedby><cites>FETCH-LOGICAL-c336t-1be334f297a91176c7e1aeedfb74441490401845f00248f8d81b066ada330b143</cites><orcidid>0000-0002-2706-2936 ; 0000-0002-2900-262X ; 0000-0002-5936-8470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9945656$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Costantino, Gianpiero</creatorcontrib><creatorcontrib>De Vincenzi, Marco</creatorcontrib><creatorcontrib>Martinelli, Fabio</creatorcontrib><creatorcontrib>Matteucci, Ilaria</creatorcontrib><title>A Privacy-Preserving Solution for Intelligent Transportation Systems: Private Driver DNA</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>The rising connection of vehicles with the road infrastructure enables the creation of data-driven applications to offer drivers customized services. At the same time, these opportunities require innovative solutions to protect the drivers' privacy in a complex environment like an Intelligent Transportation System (ITS). This need is even more relevant when data are used to retrieve personal behaviors or attitudes. In our work, we propose a privacy-preserving solution, called Private Driver DNA, which designs a possible architecture, allowing drivers of an ITS to receive customized services. The proposed solution is based on the concept of Driver DNA as characterization of driver's driving style. To assure privacy, we perform the operations directly on sanitized data, using the Order Revealing Encryption (ORE) method. Besides, the proposed solution is integrated with ITS architecture defined in the European project E-Corridor. The result is an effective privacy-preserving architecture for ITS to offer customized products, which can be used to address drivers' behaviors, for example, to environmental-friendly attitudes or a more safe driving style. We test Private Driver DNA using a synthetic dataset generated with the vehicle simulator CARLA. We compare ORE with another encryption method like Homomorphic Encryption (HE) and some other privacy-preserving schemas. Besides, we quantify privacy gain and data loss utility after the data sanitization process.</description><subject>Attitudes</subject><subject>Authentication</subject><subject>Blockchains</subject><subject>Customization</subject><subject>Data loss</subject><subject>Data privacy</subject><subject>DNA</subject><subject>Driver behavior</subject><subject>driver DNA</subject><subject>homomorphic encryption</subject><subject>Intelligent transportation systems</subject><subject>ITS</subject><subject>Measurement</subject><subject>order revealing encryption</subject><subject>Privacy</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kFtLw0AQhRdRsFZ_gPgS8Dl1Zy_ZrG-l9VIoWmgE35ZNOikpaVJ3t4X-exNbfDrDzDln4CPkHugIgOqnbJYtR4wyNuIMFJfpBRmAlGlMKSSX_cxErKmk1-TG-023FRJgQL7H0cJVB1sc44VDj-5QNeto2db7ULVNVLYumjUB67paYxOizNnG71oX7N95efQBt_751BEwmnaKLpp-jG_JVWlrj3dnHZKv15ds8h7PP99mk_E8LjhPQgw5ci5KppXVACopFIJFXJW5EkKA0FRQSIUsKWUiLdNVCjlNEruynNMcBB-Sx1PvzrU_e_TBbNq9a7qXhilFldKUQeeCk6twrfcOS7Nz1da6owFqeoCmB2h6gOYMsMs8nDIVIv77tRYykQn_Bc9Ea8Q</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Costantino, Gianpiero</creator><creator>De Vincenzi, Marco</creator><creator>Martinelli, Fabio</creator><creator>Matteucci, Ilaria</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2706-2936</orcidid><orcidid>https://orcid.org/0000-0002-2900-262X</orcidid><orcidid>https://orcid.org/0000-0002-5936-8470</orcidid></search><sort><creationdate>202301</creationdate><title>A Privacy-Preserving Solution for Intelligent Transportation Systems: Private Driver DNA</title><author>Costantino, Gianpiero ; De Vincenzi, Marco ; Martinelli, Fabio ; Matteucci, Ilaria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-1be334f297a91176c7e1aeedfb74441490401845f00248f8d81b066ada330b143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attitudes</topic><topic>Authentication</topic><topic>Blockchains</topic><topic>Customization</topic><topic>Data loss</topic><topic>Data privacy</topic><topic>DNA</topic><topic>Driver behavior</topic><topic>driver DNA</topic><topic>homomorphic encryption</topic><topic>Intelligent transportation systems</topic><topic>ITS</topic><topic>Measurement</topic><topic>order revealing encryption</topic><topic>Privacy</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costantino, Gianpiero</creatorcontrib><creatorcontrib>De Vincenzi, Marco</creatorcontrib><creatorcontrib>Martinelli, Fabio</creatorcontrib><creatorcontrib>Matteucci, Ilaria</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costantino, Gianpiero</au><au>De Vincenzi, Marco</au><au>Martinelli, Fabio</au><au>Matteucci, Ilaria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Privacy-Preserving Solution for Intelligent Transportation Systems: Private Driver DNA</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2023-01</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><spage>258</spage><epage>273</epage><pages>258-273</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>The rising connection of vehicles with the road infrastructure enables the creation of data-driven applications to offer drivers customized services. At the same time, these opportunities require innovative solutions to protect the drivers' privacy in a complex environment like an Intelligent Transportation System (ITS). This need is even more relevant when data are used to retrieve personal behaviors or attitudes. In our work, we propose a privacy-preserving solution, called Private Driver DNA, which designs a possible architecture, allowing drivers of an ITS to receive customized services. The proposed solution is based on the concept of Driver DNA as characterization of driver's driving style. To assure privacy, we perform the operations directly on sanitized data, using the Order Revealing Encryption (ORE) method. Besides, the proposed solution is integrated with ITS architecture defined in the European project E-Corridor. The result is an effective privacy-preserving architecture for ITS to offer customized products, which can be used to address drivers' behaviors, for example, to environmental-friendly attitudes or a more safe driving style. We test Private Driver DNA using a synthetic dataset generated with the vehicle simulator CARLA. We compare ORE with another encryption method like Homomorphic Encryption (HE) and some other privacy-preserving schemas. Besides, we quantify privacy gain and data loss utility after the data sanitization process.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3217358</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2706-2936</orcidid><orcidid>https://orcid.org/0000-0002-2900-262X</orcidid><orcidid>https://orcid.org/0000-0002-5936-8470</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2023-01, Vol.24 (1), p.258-273
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2022_3217358
source IEEE Xplore (Online service)
subjects Attitudes
Authentication
Blockchains
Customization
Data loss
Data privacy
DNA
Driver behavior
driver DNA
homomorphic encryption
Intelligent transportation systems
ITS
Measurement
order revealing encryption
Privacy
Vehicles
title A Privacy-Preserving Solution for Intelligent Transportation Systems: Private Driver DNA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Privacy-Preserving%20Solution%20for%20Intelligent%20Transportation%20Systems:%20Private%20Driver%20DNA&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Costantino,%20Gianpiero&rft.date=2023-01&rft.volume=24&rft.issue=1&rft.spage=258&rft.epage=273&rft.pages=258-273&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3217358&rft_dat=%3Cproquest_cross%3E2770779021%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-1be334f297a91176c7e1aeedfb74441490401845f00248f8d81b066ada330b143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2770779021&rft_id=info:pmid/&rft_ieee_id=9945656&rfr_iscdi=true