Loading…
A Privacy-Preserving Solution for Intelligent Transportation Systems: Private Driver DNA
The rising connection of vehicles with the road infrastructure enables the creation of data-driven applications to offer drivers customized services. At the same time, these opportunities require innovative solutions to protect the drivers' privacy in a complex environment like an Intelligent T...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2023-01, Vol.24 (1), p.258-273 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-1be334f297a91176c7e1aeedfb74441490401845f00248f8d81b066ada330b143 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-1be334f297a91176c7e1aeedfb74441490401845f00248f8d81b066ada330b143 |
container_end_page | 273 |
container_issue | 1 |
container_start_page | 258 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 24 |
creator | Costantino, Gianpiero De Vincenzi, Marco Martinelli, Fabio Matteucci, Ilaria |
description | The rising connection of vehicles with the road infrastructure enables the creation of data-driven applications to offer drivers customized services. At the same time, these opportunities require innovative solutions to protect the drivers' privacy in a complex environment like an Intelligent Transportation System (ITS). This need is even more relevant when data are used to retrieve personal behaviors or attitudes. In our work, we propose a privacy-preserving solution, called Private Driver DNA, which designs a possible architecture, allowing drivers of an ITS to receive customized services. The proposed solution is based on the concept of Driver DNA as characterization of driver's driving style. To assure privacy, we perform the operations directly on sanitized data, using the Order Revealing Encryption (ORE) method. Besides, the proposed solution is integrated with ITS architecture defined in the European project E-Corridor. The result is an effective privacy-preserving architecture for ITS to offer customized products, which can be used to address drivers' behaviors, for example, to environmental-friendly attitudes or a more safe driving style. We test Private Driver DNA using a synthetic dataset generated with the vehicle simulator CARLA. We compare ORE with another encryption method like Homomorphic Encryption (HE) and some other privacy-preserving schemas. Besides, we quantify privacy gain and data loss utility after the data sanitization process. |
doi_str_mv | 10.1109/TITS.2022.3217358 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2022_3217358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9945656</ieee_id><sourcerecordid>2770779021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-1be334f297a91176c7e1aeedfb74441490401845f00248f8d81b066ada330b143</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsFZ_gPgS8Dl1Zy_ZrG-l9VIoWmgE35ZNOikpaVJ3t4X-exNbfDrDzDln4CPkHugIgOqnbJYtR4wyNuIMFJfpBRmAlGlMKSSX_cxErKmk1-TG-023FRJgQL7H0cJVB1sc44VDj-5QNeto2db7ULVNVLYumjUB67paYxOizNnG71oX7N95efQBt_751BEwmnaKLpp-jG_JVWlrj3dnHZKv15ds8h7PP99mk_E8LjhPQgw5ci5KppXVACopFIJFXJW5EkKA0FRQSIUsKWUiLdNVCjlNEruynNMcBB-Sx1PvzrU_e_TBbNq9a7qXhilFldKUQeeCk6twrfcOS7Nz1da6owFqeoCmB2h6gOYMsMs8nDIVIv77tRYykQn_Bc9Ea8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770779021</pqid></control><display><type>article</type><title>A Privacy-Preserving Solution for Intelligent Transportation Systems: Private Driver DNA</title><source>IEEE Xplore (Online service)</source><creator>Costantino, Gianpiero ; De Vincenzi, Marco ; Martinelli, Fabio ; Matteucci, Ilaria</creator><creatorcontrib>Costantino, Gianpiero ; De Vincenzi, Marco ; Martinelli, Fabio ; Matteucci, Ilaria</creatorcontrib><description>The rising connection of vehicles with the road infrastructure enables the creation of data-driven applications to offer drivers customized services. At the same time, these opportunities require innovative solutions to protect the drivers' privacy in a complex environment like an Intelligent Transportation System (ITS). This need is even more relevant when data are used to retrieve personal behaviors or attitudes. In our work, we propose a privacy-preserving solution, called Private Driver DNA, which designs a possible architecture, allowing drivers of an ITS to receive customized services. The proposed solution is based on the concept of Driver DNA as characterization of driver's driving style. To assure privacy, we perform the operations directly on sanitized data, using the Order Revealing Encryption (ORE) method. Besides, the proposed solution is integrated with ITS architecture defined in the European project E-Corridor. The result is an effective privacy-preserving architecture for ITS to offer customized products, which can be used to address drivers' behaviors, for example, to environmental-friendly attitudes or a more safe driving style. We test Private Driver DNA using a synthetic dataset generated with the vehicle simulator CARLA. We compare ORE with another encryption method like Homomorphic Encryption (HE) and some other privacy-preserving schemas. Besides, we quantify privacy gain and data loss utility after the data sanitization process.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3217358</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attitudes ; Authentication ; Blockchains ; Customization ; Data loss ; Data privacy ; DNA ; Driver behavior ; driver DNA ; homomorphic encryption ; Intelligent transportation systems ; ITS ; Measurement ; order revealing encryption ; Privacy ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2023-01, Vol.24 (1), p.258-273</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-1be334f297a91176c7e1aeedfb74441490401845f00248f8d81b066ada330b143</citedby><cites>FETCH-LOGICAL-c336t-1be334f297a91176c7e1aeedfb74441490401845f00248f8d81b066ada330b143</cites><orcidid>0000-0002-2706-2936 ; 0000-0002-2900-262X ; 0000-0002-5936-8470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9945656$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Costantino, Gianpiero</creatorcontrib><creatorcontrib>De Vincenzi, Marco</creatorcontrib><creatorcontrib>Martinelli, Fabio</creatorcontrib><creatorcontrib>Matteucci, Ilaria</creatorcontrib><title>A Privacy-Preserving Solution for Intelligent Transportation Systems: Private Driver DNA</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>The rising connection of vehicles with the road infrastructure enables the creation of data-driven applications to offer drivers customized services. At the same time, these opportunities require innovative solutions to protect the drivers' privacy in a complex environment like an Intelligent Transportation System (ITS). This need is even more relevant when data are used to retrieve personal behaviors or attitudes. In our work, we propose a privacy-preserving solution, called Private Driver DNA, which designs a possible architecture, allowing drivers of an ITS to receive customized services. The proposed solution is based on the concept of Driver DNA as characterization of driver's driving style. To assure privacy, we perform the operations directly on sanitized data, using the Order Revealing Encryption (ORE) method. Besides, the proposed solution is integrated with ITS architecture defined in the European project E-Corridor. The result is an effective privacy-preserving architecture for ITS to offer customized products, which can be used to address drivers' behaviors, for example, to environmental-friendly attitudes or a more safe driving style. We test Private Driver DNA using a synthetic dataset generated with the vehicle simulator CARLA. We compare ORE with another encryption method like Homomorphic Encryption (HE) and some other privacy-preserving schemas. Besides, we quantify privacy gain and data loss utility after the data sanitization process.</description><subject>Attitudes</subject><subject>Authentication</subject><subject>Blockchains</subject><subject>Customization</subject><subject>Data loss</subject><subject>Data privacy</subject><subject>DNA</subject><subject>Driver behavior</subject><subject>driver DNA</subject><subject>homomorphic encryption</subject><subject>Intelligent transportation systems</subject><subject>ITS</subject><subject>Measurement</subject><subject>order revealing encryption</subject><subject>Privacy</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kFtLw0AQhRdRsFZ_gPgS8Dl1Zy_ZrG-l9VIoWmgE35ZNOikpaVJ3t4X-exNbfDrDzDln4CPkHugIgOqnbJYtR4wyNuIMFJfpBRmAlGlMKSSX_cxErKmk1-TG-023FRJgQL7H0cJVB1sc44VDj-5QNeto2db7ULVNVLYumjUB67paYxOizNnG71oX7N95efQBt_751BEwmnaKLpp-jG_JVWlrj3dnHZKv15ds8h7PP99mk_E8LjhPQgw5ci5KppXVACopFIJFXJW5EkKA0FRQSIUsKWUiLdNVCjlNEruynNMcBB-Sx1PvzrU_e_TBbNq9a7qXhilFldKUQeeCk6twrfcOS7Nz1da6owFqeoCmB2h6gOYMsMs8nDIVIv77tRYykQn_Bc9Ea8Q</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Costantino, Gianpiero</creator><creator>De Vincenzi, Marco</creator><creator>Martinelli, Fabio</creator><creator>Matteucci, Ilaria</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2706-2936</orcidid><orcidid>https://orcid.org/0000-0002-2900-262X</orcidid><orcidid>https://orcid.org/0000-0002-5936-8470</orcidid></search><sort><creationdate>202301</creationdate><title>A Privacy-Preserving Solution for Intelligent Transportation Systems: Private Driver DNA</title><author>Costantino, Gianpiero ; De Vincenzi, Marco ; Martinelli, Fabio ; Matteucci, Ilaria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-1be334f297a91176c7e1aeedfb74441490401845f00248f8d81b066ada330b143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attitudes</topic><topic>Authentication</topic><topic>Blockchains</topic><topic>Customization</topic><topic>Data loss</topic><topic>Data privacy</topic><topic>DNA</topic><topic>Driver behavior</topic><topic>driver DNA</topic><topic>homomorphic encryption</topic><topic>Intelligent transportation systems</topic><topic>ITS</topic><topic>Measurement</topic><topic>order revealing encryption</topic><topic>Privacy</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costantino, Gianpiero</creatorcontrib><creatorcontrib>De Vincenzi, Marco</creatorcontrib><creatorcontrib>Martinelli, Fabio</creatorcontrib><creatorcontrib>Matteucci, Ilaria</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costantino, Gianpiero</au><au>De Vincenzi, Marco</au><au>Martinelli, Fabio</au><au>Matteucci, Ilaria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Privacy-Preserving Solution for Intelligent Transportation Systems: Private Driver DNA</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2023-01</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><spage>258</spage><epage>273</epage><pages>258-273</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>The rising connection of vehicles with the road infrastructure enables the creation of data-driven applications to offer drivers customized services. At the same time, these opportunities require innovative solutions to protect the drivers' privacy in a complex environment like an Intelligent Transportation System (ITS). This need is even more relevant when data are used to retrieve personal behaviors or attitudes. In our work, we propose a privacy-preserving solution, called Private Driver DNA, which designs a possible architecture, allowing drivers of an ITS to receive customized services. The proposed solution is based on the concept of Driver DNA as characterization of driver's driving style. To assure privacy, we perform the operations directly on sanitized data, using the Order Revealing Encryption (ORE) method. Besides, the proposed solution is integrated with ITS architecture defined in the European project E-Corridor. The result is an effective privacy-preserving architecture for ITS to offer customized products, which can be used to address drivers' behaviors, for example, to environmental-friendly attitudes or a more safe driving style. We test Private Driver DNA using a synthetic dataset generated with the vehicle simulator CARLA. We compare ORE with another encryption method like Homomorphic Encryption (HE) and some other privacy-preserving schemas. Besides, we quantify privacy gain and data loss utility after the data sanitization process.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3217358</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2706-2936</orcidid><orcidid>https://orcid.org/0000-0002-2900-262X</orcidid><orcidid>https://orcid.org/0000-0002-5936-8470</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2023-01, Vol.24 (1), p.258-273 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2022_3217358 |
source | IEEE Xplore (Online service) |
subjects | Attitudes Authentication Blockchains Customization Data loss Data privacy DNA Driver behavior driver DNA homomorphic encryption Intelligent transportation systems ITS Measurement order revealing encryption Privacy Vehicles |
title | A Privacy-Preserving Solution for Intelligent Transportation Systems: Private Driver DNA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Privacy-Preserving%20Solution%20for%20Intelligent%20Transportation%20Systems:%20Private%20Driver%20DNA&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Costantino,%20Gianpiero&rft.date=2023-01&rft.volume=24&rft.issue=1&rft.spage=258&rft.epage=273&rft.pages=258-273&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3217358&rft_dat=%3Cproquest_cross%3E2770779021%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-1be334f297a91176c7e1aeedfb74441490401845f00248f8d81b066ada330b143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2770779021&rft_id=info:pmid/&rft_ieee_id=9945656&rfr_iscdi=true |