Loading…
Task-Driven Controllable Scenario Generation Framework Based on AOG
Sampling, generation, and evaluation of scenarios are essential steps for intelligent testing of autonomous vehicles. Since uncertainty in driving behavior always leads to different occurrence frequencies of scenarios, we have to sample these scenarios in naturalistic datasets. Furthermore, a specif...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2024-06, Vol.25 (6), p.6186-6199 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c246t-4f6dea0bbd2681b6c66b38a5222c56436b95f21763743138be20f95be3ffec2f3 |
container_end_page | 6199 |
container_issue | 6 |
container_start_page | 6186 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 25 |
creator | Ge, Jingwei Zhang, Jiawei Chang, Cheng Zhang, Yi Yao, Danya Li, Li |
description | Sampling, generation, and evaluation of scenarios are essential steps for intelligent testing of autonomous vehicles. Since uncertainty in driving behavior always leads to different occurrence frequencies of scenarios, we have to sample these scenarios in naturalistic datasets. Furthermore, a specified scenario needs to be further enriched and the driving behavior within it needs to be fully described to carry out generation in simulation systems. However, existing approaches generate scenarios randomly and uncontrollably, which makes them unable to precisely generate the specified scenarios. The driving behavior they describe is also memoryless and inflexible. To address the two issues, we propose a task-driven controllable scenario generation framework that can generate scenarios with the consideration of the driving behavior of Surrounding Vehicles (SVs) in a controllable manner. We first manually assign the driving behavior based on different testing tasks for all the considered vehicles. Then we expand the driving behavior temporally as the continuation and transition of several motion activities and generate the corresponding vehicle trajectories spatially. We adopt And-Or Graph (AOG) to model the transition between these motion activities. In contrast to the common memoryless Markov process, our framework generates driving behavior with continuity and driving memory. Finally, we evaluate our framework by generating lane-changing scenarios. |
doi_str_mv | 10.1109/TITS.2023.3347535 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2023_3347535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10401017</ieee_id><sourcerecordid>3062736584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-4f6dea0bbd2681b6c66b38a5222c56436b95f21763743138be20f95be3ffec2f3</originalsourceid><addsrcrecordid>eNpNkEFLwzAUx4MoOKcfQPBQ8NyZ5CVpe5zVzcFgh9VzSLoX6NY1M-kUv70d28HTe_z5_d-DHyGPjE4Yo8VLtajWE045TABEJkFekRGTMk8pZer6tHORFlTSW3IX43ZIhWRsRMrKxF36Fppv7JLSd33wbWtsi8m6xs6Exidz7DCYvvFdMgtmjz8-7JJXE3GTDNF0Nb8nN860ER8uc0w-Z-9V-ZEuV_NFOV2mNReqT4VTGzTU2g1XObOqVspCbiTnvJZKgLKFdJxlCjIBDHKLnLpCWgTnsOYOxuT5fPcQ_NcRY6-3_hi64aUGqngGSuZioNiZqoOPMaDTh9DsTfjVjOqTK31ypU-u9MXV0Hk6dxpE_McLyijL4A-um2Qd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062736584</pqid></control><display><type>article</type><title>Task-Driven Controllable Scenario Generation Framework Based on AOG</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ge, Jingwei ; Zhang, Jiawei ; Chang, Cheng ; Zhang, Yi ; Yao, Danya ; Li, Li</creator><creatorcontrib>Ge, Jingwei ; Zhang, Jiawei ; Chang, Cheng ; Zhang, Yi ; Yao, Danya ; Li, Li</creatorcontrib><description>Sampling, generation, and evaluation of scenarios are essential steps for intelligent testing of autonomous vehicles. Since uncertainty in driving behavior always leads to different occurrence frequencies of scenarios, we have to sample these scenarios in naturalistic datasets. Furthermore, a specified scenario needs to be further enriched and the driving behavior within it needs to be fully described to carry out generation in simulation systems. However, existing approaches generate scenarios randomly and uncontrollably, which makes them unable to precisely generate the specified scenarios. The driving behavior they describe is also memoryless and inflexible. To address the two issues, we propose a task-driven controllable scenario generation framework that can generate scenarios with the consideration of the driving behavior of Surrounding Vehicles (SVs) in a controllable manner. We first manually assign the driving behavior based on different testing tasks for all the considered vehicles. Then we expand the driving behavior temporally as the continuation and transition of several motion activities and generate the corresponding vehicle trajectories spatially. We adopt And-Or Graph (AOG) to model the transition between these motion activities. In contrast to the common memoryless Markov process, our framework generates driving behavior with continuity and driving memory. Finally, we evaluate our framework by generating lane-changing scenarios.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3347535</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AOG ; Autonomous vehicles ; Behavioral sciences ; Controllability ; intelligence testing ; Lane changing ; Markov processes ; Scenario generation ; Speed limits ; Testing ; Trajectory ; Uncertainty ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-06, Vol.25 (6), p.6186-6199</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-4f6dea0bbd2681b6c66b38a5222c56436b95f21763743138be20f95be3ffec2f3</cites><orcidid>0000-0002-8634-1687 ; 0000-0001-5526-866X ; 0000-0003-2309-9739 ; 0000-0002-9428-1960 ; 0000-0001-5032-6322 ; 0000-0003-2768-5866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10401017$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ge, Jingwei</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Chang, Cheng</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Yao, Danya</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><title>Task-Driven Controllable Scenario Generation Framework Based on AOG</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Sampling, generation, and evaluation of scenarios are essential steps for intelligent testing of autonomous vehicles. Since uncertainty in driving behavior always leads to different occurrence frequencies of scenarios, we have to sample these scenarios in naturalistic datasets. Furthermore, a specified scenario needs to be further enriched and the driving behavior within it needs to be fully described to carry out generation in simulation systems. However, existing approaches generate scenarios randomly and uncontrollably, which makes them unable to precisely generate the specified scenarios. The driving behavior they describe is also memoryless and inflexible. To address the two issues, we propose a task-driven controllable scenario generation framework that can generate scenarios with the consideration of the driving behavior of Surrounding Vehicles (SVs) in a controllable manner. We first manually assign the driving behavior based on different testing tasks for all the considered vehicles. Then we expand the driving behavior temporally as the continuation and transition of several motion activities and generate the corresponding vehicle trajectories spatially. We adopt And-Or Graph (AOG) to model the transition between these motion activities. In contrast to the common memoryless Markov process, our framework generates driving behavior with continuity and driving memory. Finally, we evaluate our framework by generating lane-changing scenarios.</description><subject>AOG</subject><subject>Autonomous vehicles</subject><subject>Behavioral sciences</subject><subject>Controllability</subject><subject>intelligence testing</subject><subject>Lane changing</subject><subject>Markov processes</subject><subject>Scenario generation</subject><subject>Speed limits</subject><subject>Testing</subject><subject>Trajectory</subject><subject>Uncertainty</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLwzAUx4MoOKcfQPBQ8NyZ5CVpe5zVzcFgh9VzSLoX6NY1M-kUv70d28HTe_z5_d-DHyGPjE4Yo8VLtajWE045TABEJkFekRGTMk8pZer6tHORFlTSW3IX43ZIhWRsRMrKxF36Fppv7JLSd33wbWtsi8m6xs6Exidz7DCYvvFdMgtmjz8-7JJXE3GTDNF0Nb8nN860ER8uc0w-Z-9V-ZEuV_NFOV2mNReqT4VTGzTU2g1XObOqVspCbiTnvJZKgLKFdJxlCjIBDHKLnLpCWgTnsOYOxuT5fPcQ_NcRY6-3_hi64aUGqngGSuZioNiZqoOPMaDTh9DsTfjVjOqTK31ypU-u9MXV0Hk6dxpE_McLyijL4A-um2Qd</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ge, Jingwei</creator><creator>Zhang, Jiawei</creator><creator>Chang, Cheng</creator><creator>Zhang, Yi</creator><creator>Yao, Danya</creator><creator>Li, Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8634-1687</orcidid><orcidid>https://orcid.org/0000-0001-5526-866X</orcidid><orcidid>https://orcid.org/0000-0003-2309-9739</orcidid><orcidid>https://orcid.org/0000-0002-9428-1960</orcidid><orcidid>https://orcid.org/0000-0001-5032-6322</orcidid><orcidid>https://orcid.org/0000-0003-2768-5866</orcidid></search><sort><creationdate>20240601</creationdate><title>Task-Driven Controllable Scenario Generation Framework Based on AOG</title><author>Ge, Jingwei ; Zhang, Jiawei ; Chang, Cheng ; Zhang, Yi ; Yao, Danya ; Li, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-4f6dea0bbd2681b6c66b38a5222c56436b95f21763743138be20f95be3ffec2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AOG</topic><topic>Autonomous vehicles</topic><topic>Behavioral sciences</topic><topic>Controllability</topic><topic>intelligence testing</topic><topic>Lane changing</topic><topic>Markov processes</topic><topic>Scenario generation</topic><topic>Speed limits</topic><topic>Testing</topic><topic>Trajectory</topic><topic>Uncertainty</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Jingwei</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Chang, Cheng</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Yao, Danya</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Jingwei</au><au>Zhang, Jiawei</au><au>Chang, Cheng</au><au>Zhang, Yi</au><au>Yao, Danya</au><au>Li, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task-Driven Controllable Scenario Generation Framework Based on AOG</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>25</volume><issue>6</issue><spage>6186</spage><epage>6199</epage><pages>6186-6199</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Sampling, generation, and evaluation of scenarios are essential steps for intelligent testing of autonomous vehicles. Since uncertainty in driving behavior always leads to different occurrence frequencies of scenarios, we have to sample these scenarios in naturalistic datasets. Furthermore, a specified scenario needs to be further enriched and the driving behavior within it needs to be fully described to carry out generation in simulation systems. However, existing approaches generate scenarios randomly and uncontrollably, which makes them unable to precisely generate the specified scenarios. The driving behavior they describe is also memoryless and inflexible. To address the two issues, we propose a task-driven controllable scenario generation framework that can generate scenarios with the consideration of the driving behavior of Surrounding Vehicles (SVs) in a controllable manner. We first manually assign the driving behavior based on different testing tasks for all the considered vehicles. Then we expand the driving behavior temporally as the continuation and transition of several motion activities and generate the corresponding vehicle trajectories spatially. We adopt And-Or Graph (AOG) to model the transition between these motion activities. In contrast to the common memoryless Markov process, our framework generates driving behavior with continuity and driving memory. Finally, we evaluate our framework by generating lane-changing scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3347535</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8634-1687</orcidid><orcidid>https://orcid.org/0000-0001-5526-866X</orcidid><orcidid>https://orcid.org/0000-0003-2309-9739</orcidid><orcidid>https://orcid.org/0000-0002-9428-1960</orcidid><orcidid>https://orcid.org/0000-0001-5032-6322</orcidid><orcidid>https://orcid.org/0000-0003-2768-5866</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2024-06, Vol.25 (6), p.6186-6199 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2023_3347535 |
source | IEEE Electronic Library (IEL) Journals |
subjects | AOG Autonomous vehicles Behavioral sciences Controllability intelligence testing Lane changing Markov processes Scenario generation Speed limits Testing Trajectory Uncertainty Vehicles |
title | Task-Driven Controllable Scenario Generation Framework Based on AOG |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task-Driven%20Controllable%20Scenario%20Generation%20Framework%20Based%20on%20AOG&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Ge,%20Jingwei&rft.date=2024-06-01&rft.volume=25&rft.issue=6&rft.spage=6186&rft.epage=6199&rft.pages=6186-6199&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3347535&rft_dat=%3Cproquest_cross%3E3062736584%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-4f6dea0bbd2681b6c66b38a5222c56436b95f21763743138be20f95be3ffec2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3062736584&rft_id=info:pmid/&rft_ieee_id=10401017&rfr_iscdi=true |