Loading…

Task-Driven Controllable Scenario Generation Framework Based on AOG

Sampling, generation, and evaluation of scenarios are essential steps for intelligent testing of autonomous vehicles. Since uncertainty in driving behavior always leads to different occurrence frequencies of scenarios, we have to sample these scenarios in naturalistic datasets. Furthermore, a specif...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2024-06, Vol.25 (6), p.6186-6199
Main Authors: Ge, Jingwei, Zhang, Jiawei, Chang, Cheng, Zhang, Yi, Yao, Danya, Li, Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-4f6dea0bbd2681b6c66b38a5222c56436b95f21763743138be20f95be3ffec2f3
container_end_page 6199
container_issue 6
container_start_page 6186
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Ge, Jingwei
Zhang, Jiawei
Chang, Cheng
Zhang, Yi
Yao, Danya
Li, Li
description Sampling, generation, and evaluation of scenarios are essential steps for intelligent testing of autonomous vehicles. Since uncertainty in driving behavior always leads to different occurrence frequencies of scenarios, we have to sample these scenarios in naturalistic datasets. Furthermore, a specified scenario needs to be further enriched and the driving behavior within it needs to be fully described to carry out generation in simulation systems. However, existing approaches generate scenarios randomly and uncontrollably, which makes them unable to precisely generate the specified scenarios. The driving behavior they describe is also memoryless and inflexible. To address the two issues, we propose a task-driven controllable scenario generation framework that can generate scenarios with the consideration of the driving behavior of Surrounding Vehicles (SVs) in a controllable manner. We first manually assign the driving behavior based on different testing tasks for all the considered vehicles. Then we expand the driving behavior temporally as the continuation and transition of several motion activities and generate the corresponding vehicle trajectories spatially. We adopt And-Or Graph (AOG) to model the transition between these motion activities. In contrast to the common memoryless Markov process, our framework generates driving behavior with continuity and driving memory. Finally, we evaluate our framework by generating lane-changing scenarios.
doi_str_mv 10.1109/TITS.2023.3347535
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2023_3347535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10401017</ieee_id><sourcerecordid>3062736584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-4f6dea0bbd2681b6c66b38a5222c56436b95f21763743138be20f95be3ffec2f3</originalsourceid><addsrcrecordid>eNpNkEFLwzAUx4MoOKcfQPBQ8NyZ5CVpe5zVzcFgh9VzSLoX6NY1M-kUv70d28HTe_z5_d-DHyGPjE4Yo8VLtajWE045TABEJkFekRGTMk8pZer6tHORFlTSW3IX43ZIhWRsRMrKxF36Fppv7JLSd33wbWtsi8m6xs6Exidz7DCYvvFdMgtmjz8-7JJXE3GTDNF0Nb8nN860ER8uc0w-Z-9V-ZEuV_NFOV2mNReqT4VTGzTU2g1XObOqVspCbiTnvJZKgLKFdJxlCjIBDHKLnLpCWgTnsOYOxuT5fPcQ_NcRY6-3_hi64aUGqngGSuZioNiZqoOPMaDTh9DsTfjVjOqTK31ypU-u9MXV0Hk6dxpE_McLyijL4A-um2Qd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062736584</pqid></control><display><type>article</type><title>Task-Driven Controllable Scenario Generation Framework Based on AOG</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ge, Jingwei ; Zhang, Jiawei ; Chang, Cheng ; Zhang, Yi ; Yao, Danya ; Li, Li</creator><creatorcontrib>Ge, Jingwei ; Zhang, Jiawei ; Chang, Cheng ; Zhang, Yi ; Yao, Danya ; Li, Li</creatorcontrib><description>Sampling, generation, and evaluation of scenarios are essential steps for intelligent testing of autonomous vehicles. Since uncertainty in driving behavior always leads to different occurrence frequencies of scenarios, we have to sample these scenarios in naturalistic datasets. Furthermore, a specified scenario needs to be further enriched and the driving behavior within it needs to be fully described to carry out generation in simulation systems. However, existing approaches generate scenarios randomly and uncontrollably, which makes them unable to precisely generate the specified scenarios. The driving behavior they describe is also memoryless and inflexible. To address the two issues, we propose a task-driven controllable scenario generation framework that can generate scenarios with the consideration of the driving behavior of Surrounding Vehicles (SVs) in a controllable manner. We first manually assign the driving behavior based on different testing tasks for all the considered vehicles. Then we expand the driving behavior temporally as the continuation and transition of several motion activities and generate the corresponding vehicle trajectories spatially. We adopt And-Or Graph (AOG) to model the transition between these motion activities. In contrast to the common memoryless Markov process, our framework generates driving behavior with continuity and driving memory. Finally, we evaluate our framework by generating lane-changing scenarios.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3347535</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AOG ; Autonomous vehicles ; Behavioral sciences ; Controllability ; intelligence testing ; Lane changing ; Markov processes ; Scenario generation ; Speed limits ; Testing ; Trajectory ; Uncertainty ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-06, Vol.25 (6), p.6186-6199</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-4f6dea0bbd2681b6c66b38a5222c56436b95f21763743138be20f95be3ffec2f3</cites><orcidid>0000-0002-8634-1687 ; 0000-0001-5526-866X ; 0000-0003-2309-9739 ; 0000-0002-9428-1960 ; 0000-0001-5032-6322 ; 0000-0003-2768-5866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10401017$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ge, Jingwei</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Chang, Cheng</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Yao, Danya</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><title>Task-Driven Controllable Scenario Generation Framework Based on AOG</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Sampling, generation, and evaluation of scenarios are essential steps for intelligent testing of autonomous vehicles. Since uncertainty in driving behavior always leads to different occurrence frequencies of scenarios, we have to sample these scenarios in naturalistic datasets. Furthermore, a specified scenario needs to be further enriched and the driving behavior within it needs to be fully described to carry out generation in simulation systems. However, existing approaches generate scenarios randomly and uncontrollably, which makes them unable to precisely generate the specified scenarios. The driving behavior they describe is also memoryless and inflexible. To address the two issues, we propose a task-driven controllable scenario generation framework that can generate scenarios with the consideration of the driving behavior of Surrounding Vehicles (SVs) in a controllable manner. We first manually assign the driving behavior based on different testing tasks for all the considered vehicles. Then we expand the driving behavior temporally as the continuation and transition of several motion activities and generate the corresponding vehicle trajectories spatially. We adopt And-Or Graph (AOG) to model the transition between these motion activities. In contrast to the common memoryless Markov process, our framework generates driving behavior with continuity and driving memory. Finally, we evaluate our framework by generating lane-changing scenarios.</description><subject>AOG</subject><subject>Autonomous vehicles</subject><subject>Behavioral sciences</subject><subject>Controllability</subject><subject>intelligence testing</subject><subject>Lane changing</subject><subject>Markov processes</subject><subject>Scenario generation</subject><subject>Speed limits</subject><subject>Testing</subject><subject>Trajectory</subject><subject>Uncertainty</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLwzAUx4MoOKcfQPBQ8NyZ5CVpe5zVzcFgh9VzSLoX6NY1M-kUv70d28HTe_z5_d-DHyGPjE4Yo8VLtajWE045TABEJkFekRGTMk8pZer6tHORFlTSW3IX43ZIhWRsRMrKxF36Fppv7JLSd33wbWtsi8m6xs6Exidz7DCYvvFdMgtmjz8-7JJXE3GTDNF0Nb8nN860ER8uc0w-Z-9V-ZEuV_NFOV2mNReqT4VTGzTU2g1XObOqVspCbiTnvJZKgLKFdJxlCjIBDHKLnLpCWgTnsOYOxuT5fPcQ_NcRY6-3_hi64aUGqngGSuZioNiZqoOPMaDTh9DsTfjVjOqTK31ypU-u9MXV0Hk6dxpE_McLyijL4A-um2Qd</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ge, Jingwei</creator><creator>Zhang, Jiawei</creator><creator>Chang, Cheng</creator><creator>Zhang, Yi</creator><creator>Yao, Danya</creator><creator>Li, Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8634-1687</orcidid><orcidid>https://orcid.org/0000-0001-5526-866X</orcidid><orcidid>https://orcid.org/0000-0003-2309-9739</orcidid><orcidid>https://orcid.org/0000-0002-9428-1960</orcidid><orcidid>https://orcid.org/0000-0001-5032-6322</orcidid><orcidid>https://orcid.org/0000-0003-2768-5866</orcidid></search><sort><creationdate>20240601</creationdate><title>Task-Driven Controllable Scenario Generation Framework Based on AOG</title><author>Ge, Jingwei ; Zhang, Jiawei ; Chang, Cheng ; Zhang, Yi ; Yao, Danya ; Li, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-4f6dea0bbd2681b6c66b38a5222c56436b95f21763743138be20f95be3ffec2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AOG</topic><topic>Autonomous vehicles</topic><topic>Behavioral sciences</topic><topic>Controllability</topic><topic>intelligence testing</topic><topic>Lane changing</topic><topic>Markov processes</topic><topic>Scenario generation</topic><topic>Speed limits</topic><topic>Testing</topic><topic>Trajectory</topic><topic>Uncertainty</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Jingwei</creatorcontrib><creatorcontrib>Zhang, Jiawei</creatorcontrib><creatorcontrib>Chang, Cheng</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Yao, Danya</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Jingwei</au><au>Zhang, Jiawei</au><au>Chang, Cheng</au><au>Zhang, Yi</au><au>Yao, Danya</au><au>Li, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task-Driven Controllable Scenario Generation Framework Based on AOG</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>25</volume><issue>6</issue><spage>6186</spage><epage>6199</epage><pages>6186-6199</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Sampling, generation, and evaluation of scenarios are essential steps for intelligent testing of autonomous vehicles. Since uncertainty in driving behavior always leads to different occurrence frequencies of scenarios, we have to sample these scenarios in naturalistic datasets. Furthermore, a specified scenario needs to be further enriched and the driving behavior within it needs to be fully described to carry out generation in simulation systems. However, existing approaches generate scenarios randomly and uncontrollably, which makes them unable to precisely generate the specified scenarios. The driving behavior they describe is also memoryless and inflexible. To address the two issues, we propose a task-driven controllable scenario generation framework that can generate scenarios with the consideration of the driving behavior of Surrounding Vehicles (SVs) in a controllable manner. We first manually assign the driving behavior based on different testing tasks for all the considered vehicles. Then we expand the driving behavior temporally as the continuation and transition of several motion activities and generate the corresponding vehicle trajectories spatially. We adopt And-Or Graph (AOG) to model the transition between these motion activities. In contrast to the common memoryless Markov process, our framework generates driving behavior with continuity and driving memory. Finally, we evaluate our framework by generating lane-changing scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3347535</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8634-1687</orcidid><orcidid>https://orcid.org/0000-0001-5526-866X</orcidid><orcidid>https://orcid.org/0000-0003-2309-9739</orcidid><orcidid>https://orcid.org/0000-0002-9428-1960</orcidid><orcidid>https://orcid.org/0000-0001-5032-6322</orcidid><orcidid>https://orcid.org/0000-0003-2768-5866</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-06, Vol.25 (6), p.6186-6199
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2023_3347535
source IEEE Electronic Library (IEL) Journals
subjects AOG
Autonomous vehicles
Behavioral sciences
Controllability
intelligence testing
Lane changing
Markov processes
Scenario generation
Speed limits
Testing
Trajectory
Uncertainty
Vehicles
title Task-Driven Controllable Scenario Generation Framework Based on AOG
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task-Driven%20Controllable%20Scenario%20Generation%20Framework%20Based%20on%20AOG&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Ge,%20Jingwei&rft.date=2024-06-01&rft.volume=25&rft.issue=6&rft.spage=6186&rft.epage=6199&rft.pages=6186-6199&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3347535&rft_dat=%3Cproquest_cross%3E3062736584%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-4f6dea0bbd2681b6c66b38a5222c56436b95f21763743138be20f95be3ffec2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3062736584&rft_id=info:pmid/&rft_ieee_id=10401017&rfr_iscdi=true