Loading…

URLLC-Aware Proactive UAV Placement in Internet of Vehicles

Unmanned aerial vehicles (UAVs) are envisioned to provide diverse services from the air. The service quality may rely on the wireless performance which is affected by the UAV's position. In this paper, we focus on the UAV placement problem in the Internet of Vehicles, where the UAV is deployed...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2024-08, Vol.25 (8), p.10446-10451
Main Authors: Liu, Chen-Feng, Wickramasinghe, Nirmal D., Suraweera, Himal A., Bennis, Mehdi, Debbah, Merouane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c218t-6c2edc5df4544e8e443cfaadcba8b44990c95322f057de79a3aa8df6eb08a43d3
container_end_page 10451
container_issue 8
container_start_page 10446
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Liu, Chen-Feng
Wickramasinghe, Nirmal D.
Suraweera, Himal A.
Bennis, Mehdi
Debbah, Merouane
description Unmanned aerial vehicles (UAVs) are envisioned to provide diverse services from the air. The service quality may rely on the wireless performance which is affected by the UAV's position. In this paper, we focus on the UAV placement problem in the Internet of Vehicles, where the UAV is deployed to monitor the road traffic and sends the monitored videos to vehicles. The studied problem is formulated as video resolution maximization by optimizing over the UAV's position. Moreover, we take into account the maximal transmission delay and impose a probabilistic constraint. To solve the formulated problem, we first leverage the techniques in extreme value theory (EVT) and Gaussian process regression (GPR) to characterize the influence of the UAV's position on the delay performance. Based on this characterization, we subsequently propose a proactive resolution selection and UAV placement approach, which adaptively places the UAV according to the geographic distribution of vehicles. Numerical results justify the joint usage of EVT and GPR for maximal delay characterization. Through investigating the maximal transmission delay, the proposed approach nearly achieves the optimal performance when vehicles are evenly distributed, and reduces 10% and 19% of the 999-th 1000-quantile over two baselines when vehicles are biased distributed.
doi_str_mv 10.1109/TITS.2024.3352971
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2024_3352971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10414377</ieee_id><sourcerecordid>10_1109_TITS_2024_3352971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-6c2edc5df4544e8e443cfaadcba8b44990c95322f057de79a3aa8df6eb08a43d3</originalsourceid><addsrcrecordid>eNpNj9tKxDAYhIMouK4-gOBFXqA1hz9tg1eleFgouGi7tyVN_2Cl20pSFN_eLbsXXs0wzAx8hNxyFnPO9H21qd5jwQTEUiqhU35GVlypLGKMJ-eLFxBpptgluQrh85CC4nxFHuq3siyi_Md4pFs_GTv330jrfEe3g7G4x3Gm_Ug344x-xJlOju7wo7cDhmty4cwQ8Oaka1I_PVbFS1S-Pm-KvIys4NkcJVZgZ1XnQAFghgDSOmM625qsBdCaWa2kEI6ptMNUG2lM1rkEW5YZkJ1cE378tX4KwaNrvny_N_634axZ6JuFvlnomxP9YXN33PSI-K8PHGSayj8MDlYE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>URLLC-Aware Proactive UAV Placement in Internet of Vehicles</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Chen-Feng ; Wickramasinghe, Nirmal D. ; Suraweera, Himal A. ; Bennis, Mehdi ; Debbah, Merouane</creator><creatorcontrib>Liu, Chen-Feng ; Wickramasinghe, Nirmal D. ; Suraweera, Himal A. ; Bennis, Mehdi ; Debbah, Merouane</creatorcontrib><description>Unmanned aerial vehicles (UAVs) are envisioned to provide diverse services from the air. The service quality may rely on the wireless performance which is affected by the UAV's position. In this paper, we focus on the UAV placement problem in the Internet of Vehicles, where the UAV is deployed to monitor the road traffic and sends the monitored videos to vehicles. The studied problem is formulated as video resolution maximization by optimizing over the UAV's position. Moreover, we take into account the maximal transmission delay and impose a probabilistic constraint. To solve the formulated problem, we first leverage the techniques in extreme value theory (EVT) and Gaussian process regression (GPR) to characterize the influence of the UAV's position on the delay performance. Based on this characterization, we subsequently propose a proactive resolution selection and UAV placement approach, which adaptively places the UAV according to the geographic distribution of vehicles. Numerical results justify the joint usage of EVT and GPR for maximal delay characterization. Through investigating the maximal transmission delay, the proposed approach nearly achieves the optimal performance when vehicles are evenly distributed, and reduces 10% and 19% of the 999-th 1000-quantile over two baselines when vehicles are biased distributed.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3352971</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Autonomous aerial vehicles ; Beyond 5G ; Delays ; extreme value theory ; Gaussian process regression ; Image resolution ; Internet of Vehicles (IoV) ; Monitoring ; UAV ; Ultra reliable low latency communication ; URLLC ; Videos ; Wireless communication</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-08, Vol.25 (8), p.10446-10451</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-6c2edc5df4544e8e443cfaadcba8b44990c95322f057de79a3aa8df6eb08a43d3</cites><orcidid>0000-0001-8941-8080 ; 0000-0003-0261-0171 ; 0000-0001-5851-1207 ; 0009-0005-2047-7134 ; 0000-0003-4743-7528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10414377$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Liu, Chen-Feng</creatorcontrib><creatorcontrib>Wickramasinghe, Nirmal D.</creatorcontrib><creatorcontrib>Suraweera, Himal A.</creatorcontrib><creatorcontrib>Bennis, Mehdi</creatorcontrib><creatorcontrib>Debbah, Merouane</creatorcontrib><title>URLLC-Aware Proactive UAV Placement in Internet of Vehicles</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Unmanned aerial vehicles (UAVs) are envisioned to provide diverse services from the air. The service quality may rely on the wireless performance which is affected by the UAV's position. In this paper, we focus on the UAV placement problem in the Internet of Vehicles, where the UAV is deployed to monitor the road traffic and sends the monitored videos to vehicles. The studied problem is formulated as video resolution maximization by optimizing over the UAV's position. Moreover, we take into account the maximal transmission delay and impose a probabilistic constraint. To solve the formulated problem, we first leverage the techniques in extreme value theory (EVT) and Gaussian process regression (GPR) to characterize the influence of the UAV's position on the delay performance. Based on this characterization, we subsequently propose a proactive resolution selection and UAV placement approach, which adaptively places the UAV according to the geographic distribution of vehicles. Numerical results justify the joint usage of EVT and GPR for maximal delay characterization. Through investigating the maximal transmission delay, the proposed approach nearly achieves the optimal performance when vehicles are evenly distributed, and reduces 10% and 19% of the 999-th 1000-quantile over two baselines when vehicles are biased distributed.</description><subject>Autonomous aerial vehicles</subject><subject>Beyond 5G</subject><subject>Delays</subject><subject>extreme value theory</subject><subject>Gaussian process regression</subject><subject>Image resolution</subject><subject>Internet of Vehicles (IoV)</subject><subject>Monitoring</subject><subject>UAV</subject><subject>Ultra reliable low latency communication</subject><subject>URLLC</subject><subject>Videos</subject><subject>Wireless communication</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNj9tKxDAYhIMouK4-gOBFXqA1hz9tg1eleFgouGi7tyVN_2Cl20pSFN_eLbsXXs0wzAx8hNxyFnPO9H21qd5jwQTEUiqhU35GVlypLGKMJ-eLFxBpptgluQrh85CC4nxFHuq3siyi_Md4pFs_GTv330jrfEe3g7G4x3Gm_Ug344x-xJlOju7wo7cDhmty4cwQ8Oaka1I_PVbFS1S-Pm-KvIys4NkcJVZgZ1XnQAFghgDSOmM625qsBdCaWa2kEI6ptMNUG2lM1rkEW5YZkJ1cE378tX4KwaNrvny_N_634axZ6JuFvlnomxP9YXN33PSI-K8PHGSayj8MDlYE</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Liu, Chen-Feng</creator><creator>Wickramasinghe, Nirmal D.</creator><creator>Suraweera, Himal A.</creator><creator>Bennis, Mehdi</creator><creator>Debbah, Merouane</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8941-8080</orcidid><orcidid>https://orcid.org/0000-0003-0261-0171</orcidid><orcidid>https://orcid.org/0000-0001-5851-1207</orcidid><orcidid>https://orcid.org/0009-0005-2047-7134</orcidid><orcidid>https://orcid.org/0000-0003-4743-7528</orcidid></search><sort><creationdate>20240801</creationdate><title>URLLC-Aware Proactive UAV Placement in Internet of Vehicles</title><author>Liu, Chen-Feng ; Wickramasinghe, Nirmal D. ; Suraweera, Himal A. ; Bennis, Mehdi ; Debbah, Merouane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-6c2edc5df4544e8e443cfaadcba8b44990c95322f057de79a3aa8df6eb08a43d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous aerial vehicles</topic><topic>Beyond 5G</topic><topic>Delays</topic><topic>extreme value theory</topic><topic>Gaussian process regression</topic><topic>Image resolution</topic><topic>Internet of Vehicles (IoV)</topic><topic>Monitoring</topic><topic>UAV</topic><topic>Ultra reliable low latency communication</topic><topic>URLLC</topic><topic>Videos</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chen-Feng</creatorcontrib><creatorcontrib>Wickramasinghe, Nirmal D.</creatorcontrib><creatorcontrib>Suraweera, Himal A.</creatorcontrib><creatorcontrib>Bennis, Mehdi</creatorcontrib><creatorcontrib>Debbah, Merouane</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chen-Feng</au><au>Wickramasinghe, Nirmal D.</au><au>Suraweera, Himal A.</au><au>Bennis, Mehdi</au><au>Debbah, Merouane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>URLLC-Aware Proactive UAV Placement in Internet of Vehicles</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>25</volume><issue>8</issue><spage>10446</spage><epage>10451</epage><pages>10446-10451</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Unmanned aerial vehicles (UAVs) are envisioned to provide diverse services from the air. The service quality may rely on the wireless performance which is affected by the UAV's position. In this paper, we focus on the UAV placement problem in the Internet of Vehicles, where the UAV is deployed to monitor the road traffic and sends the monitored videos to vehicles. The studied problem is formulated as video resolution maximization by optimizing over the UAV's position. Moreover, we take into account the maximal transmission delay and impose a probabilistic constraint. To solve the formulated problem, we first leverage the techniques in extreme value theory (EVT) and Gaussian process regression (GPR) to characterize the influence of the UAV's position on the delay performance. Based on this characterization, we subsequently propose a proactive resolution selection and UAV placement approach, which adaptively places the UAV according to the geographic distribution of vehicles. Numerical results justify the joint usage of EVT and GPR for maximal delay characterization. Through investigating the maximal transmission delay, the proposed approach nearly achieves the optimal performance when vehicles are evenly distributed, and reduces 10% and 19% of the 999-th 1000-quantile over two baselines when vehicles are biased distributed.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3352971</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8941-8080</orcidid><orcidid>https://orcid.org/0000-0003-0261-0171</orcidid><orcidid>https://orcid.org/0000-0001-5851-1207</orcidid><orcidid>https://orcid.org/0009-0005-2047-7134</orcidid><orcidid>https://orcid.org/0000-0003-4743-7528</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-08, Vol.25 (8), p.10446-10451
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2024_3352971
source IEEE Electronic Library (IEL) Journals
subjects Autonomous aerial vehicles
Beyond 5G
Delays
extreme value theory
Gaussian process regression
Image resolution
Internet of Vehicles (IoV)
Monitoring
UAV
Ultra reliable low latency communication
URLLC
Videos
Wireless communication
title URLLC-Aware Proactive UAV Placement in Internet of Vehicles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=URLLC-Aware%20Proactive%20UAV%20Placement%20in%20Internet%20of%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Liu,%20Chen-Feng&rft.date=2024-08-01&rft.volume=25&rft.issue=8&rft.spage=10446&rft.epage=10451&rft.pages=10446-10451&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3352971&rft_dat=%3Ccrossref_ieee_%3E10_1109_TITS_2024_3352971%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-6c2edc5df4544e8e443cfaadcba8b44990c95322f057de79a3aa8df6eb08a43d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10414377&rfr_iscdi=true