Loading…

TTDNet: An End-to-End Traffic Text Detection Framework for Open Driving Environments

Traffic text detection is crucial for traffic scene understanding in intelligent transportation systems (ITS). Although natural scene text detection has been extensively studied, yielding noteworthy results, little research has focused on traffic text detection. Traffic text, as a special type of na...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2024-12, Vol.25 (12), p.19770-19784
Main Authors: Wang, Runmin, Zhu, Yanbin, Chen, Hua, Zhu, Zhenlin, Zhang, Xiangyu, Ding, Yajun, Qian, Shengyou, Gao, Changxin, Liu, Li, Sang, Nong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c148t-f749a82eeff35c58c1c22946bd3d20e694d5d737395ba5c52fad86ed1d7962f53
container_end_page 19784
container_issue 12
container_start_page 19770
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Wang, Runmin
Zhu, Yanbin
Chen, Hua
Zhu, Zhenlin
Zhang, Xiangyu
Ding, Yajun
Qian, Shengyou
Gao, Changxin
Liu, Li
Sang, Nong
description Traffic text detection is crucial for traffic scene understanding in intelligent transportation systems (ITS). Although natural scene text detection has been extensively studied, yielding noteworthy results, little research has focused on traffic text detection. Traffic text, as a special type of natural scene text, faces not only the general challenges of natural scene text detection but also the significant impact of false alarms from non-traffic texts on system performance. In light of these challenges, we propose an end-to-end traffic text detection framework that can effectively detect traffic text captured by in-vehicle cameras in various driving scenarios. The key contributions of our proposed approach are: (1) an Image Enhancement Module designed to remove fog and enhance low-quality images; (2) a plug-and-play Text Feature Enhancement Module; (3) a Joint Loss Function; and (4) the creation of an open driving environment traffic text dataset (named ODETT-3000) containing various traffic environments. Comprehensive experimental studies have verified that our method achieves state-of-the-art performance on traffic text datasets such as CTST-1600, TPD, and ODETT-3000, as well as promising results on public natural scene text datasets such as MSRA-TD500, ICDAR 2015, and CTW 1500, thereby showcasing the superior performance and adaptability of our method. The code and our dataset (ODETT-3000) will be available at https://github.com/yanbin-zhu/TTDNet .
doi_str_mv 10.1109/TITS.2024.3479884
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2024_3479884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10734855</ieee_id><sourcerecordid>10_1109_TITS_2024_3479884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-f749a82eeff35c58c1c22946bd3d20e694d5d737395ba5c52fad86ed1d7962f53</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWKsPILjIC0zN70zirvRHC8UujOshTW4kajMlM1R9-87QLlydw-V8d_EhdE_JhFKiH83KvE0YYWLCRaWVEhdoRKVUBSG0vBw6E4Umklyjm7b97K9CUjpCxpj5K3RPeJrwIvmia4o-sMk2hOiwgd8Oz6ED18Um4WW2O_hp8hcOTcabPSQ8z_EQ00cPH2Ju0g5S196iq2C_W7g75xi9Lxdm9lKsN8-r2XRdOCpUV4RKaKsYQAhcOqkcdYxpUW4994xAqYWXvuIV13Jr-wEL1qsSPPWVLlmQfIzo6a_LTdtmCPU-x53NfzUl9aClHrTUg5b6rKVnHk5MBIB_-4oLJSU_AiDgXpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TTDNet: An End-to-End Traffic Text Detection Framework for Open Driving Environments</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Runmin ; Zhu, Yanbin ; Chen, Hua ; Zhu, Zhenlin ; Zhang, Xiangyu ; Ding, Yajun ; Qian, Shengyou ; Gao, Changxin ; Liu, Li ; Sang, Nong</creator><creatorcontrib>Wang, Runmin ; Zhu, Yanbin ; Chen, Hua ; Zhu, Zhenlin ; Zhang, Xiangyu ; Ding, Yajun ; Qian, Shengyou ; Gao, Changxin ; Liu, Li ; Sang, Nong</creatorcontrib><description>Traffic text detection is crucial for traffic scene understanding in intelligent transportation systems (ITS). Although natural scene text detection has been extensively studied, yielding noteworthy results, little research has focused on traffic text detection. Traffic text, as a special type of natural scene text, faces not only the general challenges of natural scene text detection but also the significant impact of false alarms from non-traffic texts on system performance. In light of these challenges, we propose an end-to-end traffic text detection framework that can effectively detect traffic text captured by in-vehicle cameras in various driving scenarios. The key contributions of our proposed approach are: (1) an Image Enhancement Module designed to remove fog and enhance low-quality images; (2) a plug-and-play Text Feature Enhancement Module; (3) a Joint Loss Function; and (4) the creation of an open driving environment traffic text dataset (named ODETT-3000) containing various traffic environments. Comprehensive experimental studies have verified that our method achieves state-of-the-art performance on traffic text datasets such as CTST-1600, TPD, and ODETT-3000, as well as promising results on public natural scene text datasets such as MSRA-TD500, ICDAR 2015, and CTW 1500, thereby showcasing the superior performance and adaptability of our method. The code and our dataset (ODETT-3000) will be available at https://github.com/yanbin-zhu/TTDNet .</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3479884</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; convolutional neural network ; feature enhancement ; Feature extraction ; Image enhancement ; Image segmentation ; Intelligent transportation ; Intelligent transportation systems ; Meteorology ; Prediction algorithms ; Shape ; Text detection ; Text recognition ; traffic text</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-12, Vol.25 (12), p.19770-19784</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-f749a82eeff35c58c1c22946bd3d20e694d5d737395ba5c52fad86ed1d7962f53</cites><orcidid>0000-0002-9006-4563 ; 0000-0002-2011-2873 ; 0000-0002-9167-1496 ; 0000-0003-3398-8214 ; 0000-0001-9687-9918 ; 0000-0003-2736-3920 ; 0009-0008-2397-4998 ; 0009-0006-1159-5769 ; 0000-0001-8253-8290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10734855$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Wang, Runmin</creatorcontrib><creatorcontrib>Zhu, Yanbin</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>Zhu, Zhenlin</creatorcontrib><creatorcontrib>Zhang, Xiangyu</creatorcontrib><creatorcontrib>Ding, Yajun</creatorcontrib><creatorcontrib>Qian, Shengyou</creatorcontrib><creatorcontrib>Gao, Changxin</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Sang, Nong</creatorcontrib><title>TTDNet: An End-to-End Traffic Text Detection Framework for Open Driving Environments</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Traffic text detection is crucial for traffic scene understanding in intelligent transportation systems (ITS). Although natural scene text detection has been extensively studied, yielding noteworthy results, little research has focused on traffic text detection. Traffic text, as a special type of natural scene text, faces not only the general challenges of natural scene text detection but also the significant impact of false alarms from non-traffic texts on system performance. In light of these challenges, we propose an end-to-end traffic text detection framework that can effectively detect traffic text captured by in-vehicle cameras in various driving scenarios. The key contributions of our proposed approach are: (1) an Image Enhancement Module designed to remove fog and enhance low-quality images; (2) a plug-and-play Text Feature Enhancement Module; (3) a Joint Loss Function; and (4) the creation of an open driving environment traffic text dataset (named ODETT-3000) containing various traffic environments. Comprehensive experimental studies have verified that our method achieves state-of-the-art performance on traffic text datasets such as CTST-1600, TPD, and ODETT-3000, as well as promising results on public natural scene text datasets such as MSRA-TD500, ICDAR 2015, and CTW 1500, thereby showcasing the superior performance and adaptability of our method. The code and our dataset (ODETT-3000) will be available at https://github.com/yanbin-zhu/TTDNet .</description><subject>Accuracy</subject><subject>convolutional neural network</subject><subject>feature enhancement</subject><subject>Feature extraction</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Intelligent transportation</subject><subject>Intelligent transportation systems</subject><subject>Meteorology</subject><subject>Prediction algorithms</subject><subject>Shape</subject><subject>Text detection</subject><subject>Text recognition</subject><subject>traffic text</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KAzEUhYMoWKsPILjIC0zN70zirvRHC8UujOshTW4kajMlM1R9-87QLlydw-V8d_EhdE_JhFKiH83KvE0YYWLCRaWVEhdoRKVUBSG0vBw6E4Umklyjm7b97K9CUjpCxpj5K3RPeJrwIvmia4o-sMk2hOiwgd8Oz6ED18Um4WW2O_hp8hcOTcabPSQ8z_EQ00cPH2Ju0g5S196iq2C_W7g75xi9Lxdm9lKsN8-r2XRdOCpUV4RKaKsYQAhcOqkcdYxpUW4994xAqYWXvuIV13Jr-wEL1qsSPPWVLlmQfIzo6a_LTdtmCPU-x53NfzUl9aClHrTUg5b6rKVnHk5MBIB_-4oLJSU_AiDgXpw</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Wang, Runmin</creator><creator>Zhu, Yanbin</creator><creator>Chen, Hua</creator><creator>Zhu, Zhenlin</creator><creator>Zhang, Xiangyu</creator><creator>Ding, Yajun</creator><creator>Qian, Shengyou</creator><creator>Gao, Changxin</creator><creator>Liu, Li</creator><creator>Sang, Nong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9006-4563</orcidid><orcidid>https://orcid.org/0000-0002-2011-2873</orcidid><orcidid>https://orcid.org/0000-0002-9167-1496</orcidid><orcidid>https://orcid.org/0000-0003-3398-8214</orcidid><orcidid>https://orcid.org/0000-0001-9687-9918</orcidid><orcidid>https://orcid.org/0000-0003-2736-3920</orcidid><orcidid>https://orcid.org/0009-0008-2397-4998</orcidid><orcidid>https://orcid.org/0009-0006-1159-5769</orcidid><orcidid>https://orcid.org/0000-0001-8253-8290</orcidid></search><sort><creationdate>202412</creationdate><title>TTDNet: An End-to-End Traffic Text Detection Framework for Open Driving Environments</title><author>Wang, Runmin ; Zhu, Yanbin ; Chen, Hua ; Zhu, Zhenlin ; Zhang, Xiangyu ; Ding, Yajun ; Qian, Shengyou ; Gao, Changxin ; Liu, Li ; Sang, Nong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-f749a82eeff35c58c1c22946bd3d20e694d5d737395ba5c52fad86ed1d7962f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>convolutional neural network</topic><topic>feature enhancement</topic><topic>Feature extraction</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Intelligent transportation</topic><topic>Intelligent transportation systems</topic><topic>Meteorology</topic><topic>Prediction algorithms</topic><topic>Shape</topic><topic>Text detection</topic><topic>Text recognition</topic><topic>traffic text</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Runmin</creatorcontrib><creatorcontrib>Zhu, Yanbin</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>Zhu, Zhenlin</creatorcontrib><creatorcontrib>Zhang, Xiangyu</creatorcontrib><creatorcontrib>Ding, Yajun</creatorcontrib><creatorcontrib>Qian, Shengyou</creatorcontrib><creatorcontrib>Gao, Changxin</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Sang, Nong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Runmin</au><au>Zhu, Yanbin</au><au>Chen, Hua</au><au>Zhu, Zhenlin</au><au>Zhang, Xiangyu</au><au>Ding, Yajun</au><au>Qian, Shengyou</au><au>Gao, Changxin</au><au>Liu, Li</au><au>Sang, Nong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TTDNet: An End-to-End Traffic Text Detection Framework for Open Driving Environments</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-12</date><risdate>2024</risdate><volume>25</volume><issue>12</issue><spage>19770</spage><epage>19784</epage><pages>19770-19784</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Traffic text detection is crucial for traffic scene understanding in intelligent transportation systems (ITS). Although natural scene text detection has been extensively studied, yielding noteworthy results, little research has focused on traffic text detection. Traffic text, as a special type of natural scene text, faces not only the general challenges of natural scene text detection but also the significant impact of false alarms from non-traffic texts on system performance. In light of these challenges, we propose an end-to-end traffic text detection framework that can effectively detect traffic text captured by in-vehicle cameras in various driving scenarios. The key contributions of our proposed approach are: (1) an Image Enhancement Module designed to remove fog and enhance low-quality images; (2) a plug-and-play Text Feature Enhancement Module; (3) a Joint Loss Function; and (4) the creation of an open driving environment traffic text dataset (named ODETT-3000) containing various traffic environments. Comprehensive experimental studies have verified that our method achieves state-of-the-art performance on traffic text datasets such as CTST-1600, TPD, and ODETT-3000, as well as promising results on public natural scene text datasets such as MSRA-TD500, ICDAR 2015, and CTW 1500, thereby showcasing the superior performance and adaptability of our method. The code and our dataset (ODETT-3000) will be available at https://github.com/yanbin-zhu/TTDNet .</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3479884</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9006-4563</orcidid><orcidid>https://orcid.org/0000-0002-2011-2873</orcidid><orcidid>https://orcid.org/0000-0002-9167-1496</orcidid><orcidid>https://orcid.org/0000-0003-3398-8214</orcidid><orcidid>https://orcid.org/0000-0001-9687-9918</orcidid><orcidid>https://orcid.org/0000-0003-2736-3920</orcidid><orcidid>https://orcid.org/0009-0008-2397-4998</orcidid><orcidid>https://orcid.org/0009-0006-1159-5769</orcidid><orcidid>https://orcid.org/0000-0001-8253-8290</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-12, Vol.25 (12), p.19770-19784
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2024_3479884
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
convolutional neural network
feature enhancement
Feature extraction
Image enhancement
Image segmentation
Intelligent transportation
Intelligent transportation systems
Meteorology
Prediction algorithms
Shape
Text detection
Text recognition
traffic text
title TTDNet: An End-to-End Traffic Text Detection Framework for Open Driving Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TTDNet:%20An%20End-to-End%20Traffic%20Text%20Detection%20Framework%20for%20Open%20Driving%20Environments&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Wang,%20Runmin&rft.date=2024-12&rft.volume=25&rft.issue=12&rft.spage=19770&rft.epage=19784&rft.pages=19770-19784&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3479884&rft_dat=%3Ccrossref_ieee_%3E10_1109_TITS_2024_3479884%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c148t-f749a82eeff35c58c1c22946bd3d20e694d5d737395ba5c52fad86ed1d7962f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10734855&rfr_iscdi=true