Loading…
TTDNet: An End-to-End Traffic Text Detection Framework for Open Driving Environments
Traffic text detection is crucial for traffic scene understanding in intelligent transportation systems (ITS). Although natural scene text detection has been extensively studied, yielding noteworthy results, little research has focused on traffic text detection. Traffic text, as a special type of na...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2024-12, Vol.25 (12), p.19770-19784 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c148t-f749a82eeff35c58c1c22946bd3d20e694d5d737395ba5c52fad86ed1d7962f53 |
container_end_page | 19784 |
container_issue | 12 |
container_start_page | 19770 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 25 |
creator | Wang, Runmin Zhu, Yanbin Chen, Hua Zhu, Zhenlin Zhang, Xiangyu Ding, Yajun Qian, Shengyou Gao, Changxin Liu, Li Sang, Nong |
description | Traffic text detection is crucial for traffic scene understanding in intelligent transportation systems (ITS). Although natural scene text detection has been extensively studied, yielding noteworthy results, little research has focused on traffic text detection. Traffic text, as a special type of natural scene text, faces not only the general challenges of natural scene text detection but also the significant impact of false alarms from non-traffic texts on system performance. In light of these challenges, we propose an end-to-end traffic text detection framework that can effectively detect traffic text captured by in-vehicle cameras in various driving scenarios. The key contributions of our proposed approach are: (1) an Image Enhancement Module designed to remove fog and enhance low-quality images; (2) a plug-and-play Text Feature Enhancement Module; (3) a Joint Loss Function; and (4) the creation of an open driving environment traffic text dataset (named ODETT-3000) containing various traffic environments. Comprehensive experimental studies have verified that our method achieves state-of-the-art performance on traffic text datasets such as CTST-1600, TPD, and ODETT-3000, as well as promising results on public natural scene text datasets such as MSRA-TD500, ICDAR 2015, and CTW 1500, thereby showcasing the superior performance and adaptability of our method. The code and our dataset (ODETT-3000) will be available at https://github.com/yanbin-zhu/TTDNet . |
doi_str_mv | 10.1109/TITS.2024.3479884 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2024_3479884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10734855</ieee_id><sourcerecordid>10_1109_TITS_2024_3479884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-f749a82eeff35c58c1c22946bd3d20e694d5d737395ba5c52fad86ed1d7962f53</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWKsPILjIC0zN70zirvRHC8UujOshTW4kajMlM1R9-87QLlydw-V8d_EhdE_JhFKiH83KvE0YYWLCRaWVEhdoRKVUBSG0vBw6E4Umklyjm7b97K9CUjpCxpj5K3RPeJrwIvmia4o-sMk2hOiwgd8Oz6ED18Um4WW2O_hp8hcOTcabPSQ8z_EQ00cPH2Ju0g5S196iq2C_W7g75xi9Lxdm9lKsN8-r2XRdOCpUV4RKaKsYQAhcOqkcdYxpUW4994xAqYWXvuIV13Jr-wEL1qsSPPWVLlmQfIzo6a_LTdtmCPU-x53NfzUl9aClHrTUg5b6rKVnHk5MBIB_-4oLJSU_AiDgXpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TTDNet: An End-to-End Traffic Text Detection Framework for Open Driving Environments</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Runmin ; Zhu, Yanbin ; Chen, Hua ; Zhu, Zhenlin ; Zhang, Xiangyu ; Ding, Yajun ; Qian, Shengyou ; Gao, Changxin ; Liu, Li ; Sang, Nong</creator><creatorcontrib>Wang, Runmin ; Zhu, Yanbin ; Chen, Hua ; Zhu, Zhenlin ; Zhang, Xiangyu ; Ding, Yajun ; Qian, Shengyou ; Gao, Changxin ; Liu, Li ; Sang, Nong</creatorcontrib><description>Traffic text detection is crucial for traffic scene understanding in intelligent transportation systems (ITS). Although natural scene text detection has been extensively studied, yielding noteworthy results, little research has focused on traffic text detection. Traffic text, as a special type of natural scene text, faces not only the general challenges of natural scene text detection but also the significant impact of false alarms from non-traffic texts on system performance. In light of these challenges, we propose an end-to-end traffic text detection framework that can effectively detect traffic text captured by in-vehicle cameras in various driving scenarios. The key contributions of our proposed approach are: (1) an Image Enhancement Module designed to remove fog and enhance low-quality images; (2) a plug-and-play Text Feature Enhancement Module; (3) a Joint Loss Function; and (4) the creation of an open driving environment traffic text dataset (named ODETT-3000) containing various traffic environments. Comprehensive experimental studies have verified that our method achieves state-of-the-art performance on traffic text datasets such as CTST-1600, TPD, and ODETT-3000, as well as promising results on public natural scene text datasets such as MSRA-TD500, ICDAR 2015, and CTW 1500, thereby showcasing the superior performance and adaptability of our method. The code and our dataset (ODETT-3000) will be available at https://github.com/yanbin-zhu/TTDNet .</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3479884</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; convolutional neural network ; feature enhancement ; Feature extraction ; Image enhancement ; Image segmentation ; Intelligent transportation ; Intelligent transportation systems ; Meteorology ; Prediction algorithms ; Shape ; Text detection ; Text recognition ; traffic text</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-12, Vol.25 (12), p.19770-19784</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-f749a82eeff35c58c1c22946bd3d20e694d5d737395ba5c52fad86ed1d7962f53</cites><orcidid>0000-0002-9006-4563 ; 0000-0002-2011-2873 ; 0000-0002-9167-1496 ; 0000-0003-3398-8214 ; 0000-0001-9687-9918 ; 0000-0003-2736-3920 ; 0009-0008-2397-4998 ; 0009-0006-1159-5769 ; 0000-0001-8253-8290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10734855$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Wang, Runmin</creatorcontrib><creatorcontrib>Zhu, Yanbin</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>Zhu, Zhenlin</creatorcontrib><creatorcontrib>Zhang, Xiangyu</creatorcontrib><creatorcontrib>Ding, Yajun</creatorcontrib><creatorcontrib>Qian, Shengyou</creatorcontrib><creatorcontrib>Gao, Changxin</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Sang, Nong</creatorcontrib><title>TTDNet: An End-to-End Traffic Text Detection Framework for Open Driving Environments</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Traffic text detection is crucial for traffic scene understanding in intelligent transportation systems (ITS). Although natural scene text detection has been extensively studied, yielding noteworthy results, little research has focused on traffic text detection. Traffic text, as a special type of natural scene text, faces not only the general challenges of natural scene text detection but also the significant impact of false alarms from non-traffic texts on system performance. In light of these challenges, we propose an end-to-end traffic text detection framework that can effectively detect traffic text captured by in-vehicle cameras in various driving scenarios. The key contributions of our proposed approach are: (1) an Image Enhancement Module designed to remove fog and enhance low-quality images; (2) a plug-and-play Text Feature Enhancement Module; (3) a Joint Loss Function; and (4) the creation of an open driving environment traffic text dataset (named ODETT-3000) containing various traffic environments. Comprehensive experimental studies have verified that our method achieves state-of-the-art performance on traffic text datasets such as CTST-1600, TPD, and ODETT-3000, as well as promising results on public natural scene text datasets such as MSRA-TD500, ICDAR 2015, and CTW 1500, thereby showcasing the superior performance and adaptability of our method. The code and our dataset (ODETT-3000) will be available at https://github.com/yanbin-zhu/TTDNet .</description><subject>Accuracy</subject><subject>convolutional neural network</subject><subject>feature enhancement</subject><subject>Feature extraction</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Intelligent transportation</subject><subject>Intelligent transportation systems</subject><subject>Meteorology</subject><subject>Prediction algorithms</subject><subject>Shape</subject><subject>Text detection</subject><subject>Text recognition</subject><subject>traffic text</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KAzEUhYMoWKsPILjIC0zN70zirvRHC8UujOshTW4kajMlM1R9-87QLlydw-V8d_EhdE_JhFKiH83KvE0YYWLCRaWVEhdoRKVUBSG0vBw6E4Umklyjm7b97K9CUjpCxpj5K3RPeJrwIvmia4o-sMk2hOiwgd8Oz6ED18Um4WW2O_hp8hcOTcabPSQ8z_EQ00cPH2Ju0g5S196iq2C_W7g75xi9Lxdm9lKsN8-r2XRdOCpUV4RKaKsYQAhcOqkcdYxpUW4994xAqYWXvuIV13Jr-wEL1qsSPPWVLlmQfIzo6a_LTdtmCPU-x53NfzUl9aClHrTUg5b6rKVnHk5MBIB_-4oLJSU_AiDgXpw</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Wang, Runmin</creator><creator>Zhu, Yanbin</creator><creator>Chen, Hua</creator><creator>Zhu, Zhenlin</creator><creator>Zhang, Xiangyu</creator><creator>Ding, Yajun</creator><creator>Qian, Shengyou</creator><creator>Gao, Changxin</creator><creator>Liu, Li</creator><creator>Sang, Nong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9006-4563</orcidid><orcidid>https://orcid.org/0000-0002-2011-2873</orcidid><orcidid>https://orcid.org/0000-0002-9167-1496</orcidid><orcidid>https://orcid.org/0000-0003-3398-8214</orcidid><orcidid>https://orcid.org/0000-0001-9687-9918</orcidid><orcidid>https://orcid.org/0000-0003-2736-3920</orcidid><orcidid>https://orcid.org/0009-0008-2397-4998</orcidid><orcidid>https://orcid.org/0009-0006-1159-5769</orcidid><orcidid>https://orcid.org/0000-0001-8253-8290</orcidid></search><sort><creationdate>202412</creationdate><title>TTDNet: An End-to-End Traffic Text Detection Framework for Open Driving Environments</title><author>Wang, Runmin ; Zhu, Yanbin ; Chen, Hua ; Zhu, Zhenlin ; Zhang, Xiangyu ; Ding, Yajun ; Qian, Shengyou ; Gao, Changxin ; Liu, Li ; Sang, Nong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-f749a82eeff35c58c1c22946bd3d20e694d5d737395ba5c52fad86ed1d7962f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>convolutional neural network</topic><topic>feature enhancement</topic><topic>Feature extraction</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Intelligent transportation</topic><topic>Intelligent transportation systems</topic><topic>Meteorology</topic><topic>Prediction algorithms</topic><topic>Shape</topic><topic>Text detection</topic><topic>Text recognition</topic><topic>traffic text</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Runmin</creatorcontrib><creatorcontrib>Zhu, Yanbin</creatorcontrib><creatorcontrib>Chen, Hua</creatorcontrib><creatorcontrib>Zhu, Zhenlin</creatorcontrib><creatorcontrib>Zhang, Xiangyu</creatorcontrib><creatorcontrib>Ding, Yajun</creatorcontrib><creatorcontrib>Qian, Shengyou</creatorcontrib><creatorcontrib>Gao, Changxin</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Sang, Nong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Runmin</au><au>Zhu, Yanbin</au><au>Chen, Hua</au><au>Zhu, Zhenlin</au><au>Zhang, Xiangyu</au><au>Ding, Yajun</au><au>Qian, Shengyou</au><au>Gao, Changxin</au><au>Liu, Li</au><au>Sang, Nong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TTDNet: An End-to-End Traffic Text Detection Framework for Open Driving Environments</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-12</date><risdate>2024</risdate><volume>25</volume><issue>12</issue><spage>19770</spage><epage>19784</epage><pages>19770-19784</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Traffic text detection is crucial for traffic scene understanding in intelligent transportation systems (ITS). Although natural scene text detection has been extensively studied, yielding noteworthy results, little research has focused on traffic text detection. Traffic text, as a special type of natural scene text, faces not only the general challenges of natural scene text detection but also the significant impact of false alarms from non-traffic texts on system performance. In light of these challenges, we propose an end-to-end traffic text detection framework that can effectively detect traffic text captured by in-vehicle cameras in various driving scenarios. The key contributions of our proposed approach are: (1) an Image Enhancement Module designed to remove fog and enhance low-quality images; (2) a plug-and-play Text Feature Enhancement Module; (3) a Joint Loss Function; and (4) the creation of an open driving environment traffic text dataset (named ODETT-3000) containing various traffic environments. Comprehensive experimental studies have verified that our method achieves state-of-the-art performance on traffic text datasets such as CTST-1600, TPD, and ODETT-3000, as well as promising results on public natural scene text datasets such as MSRA-TD500, ICDAR 2015, and CTW 1500, thereby showcasing the superior performance and adaptability of our method. The code and our dataset (ODETT-3000) will be available at https://github.com/yanbin-zhu/TTDNet .</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3479884</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9006-4563</orcidid><orcidid>https://orcid.org/0000-0002-2011-2873</orcidid><orcidid>https://orcid.org/0000-0002-9167-1496</orcidid><orcidid>https://orcid.org/0000-0003-3398-8214</orcidid><orcidid>https://orcid.org/0000-0001-9687-9918</orcidid><orcidid>https://orcid.org/0000-0003-2736-3920</orcidid><orcidid>https://orcid.org/0009-0008-2397-4998</orcidid><orcidid>https://orcid.org/0009-0006-1159-5769</orcidid><orcidid>https://orcid.org/0000-0001-8253-8290</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2024-12, Vol.25 (12), p.19770-19784 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2024_3479884 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Accuracy convolutional neural network feature enhancement Feature extraction Image enhancement Image segmentation Intelligent transportation Intelligent transportation systems Meteorology Prediction algorithms Shape Text detection Text recognition traffic text |
title | TTDNet: An End-to-End Traffic Text Detection Framework for Open Driving Environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TTDNet:%20An%20End-to-End%20Traffic%20Text%20Detection%20Framework%20for%20Open%20Driving%20Environments&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Wang,%20Runmin&rft.date=2024-12&rft.volume=25&rft.issue=12&rft.spage=19770&rft.epage=19784&rft.pages=19770-19784&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3479884&rft_dat=%3Ccrossref_ieee_%3E10_1109_TITS_2024_3479884%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c148t-f749a82eeff35c58c1c22946bd3d20e694d5d737395ba5c52fad86ed1d7962f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10734855&rfr_iscdi=true |