Loading…

Development of a Modular ROS-Enabled Pedestrian Intention Prediction Architecture for AVs Maneuvering Control

In this work, the problem of predicting a pedestrian's intention to cross the road is addressed using visual data from a camera. The proposed ROS-based modular architecture consists of four modules: Visual-Perception, Intention Prediction, and Planning and Control Modules. The Visual Perception...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2024-11, p.1-12
Main Authors: Manzour, Mohamed A., Elias, Catherine M., Morgan, Elsayed I., Shehata, Omar M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on intelligent transportation systems
container_volume
creator Manzour, Mohamed A.
Elias, Catherine M.
Morgan, Elsayed I.
Shehata, Omar M.
description In this work, the problem of predicting a pedestrian's intention to cross the road is addressed using visual data from a camera. The proposed ROS-based modular architecture consists of four modules: Visual-Perception, Intention Prediction, and Planning and Control Modules. The Visual Perception module is divided into three sub-modules. The pedestrian detection is responsible for detecting the pedestrian and analyzing his motion and looking states. The lane detection is responsible for analyzing the structured environment which helps in the road state classifiers. The third sub-module aims to extract some curvilinear localization states that are essential for the vehicle's motion planning and control. The intention prediction module captures the pedestrian's intention to cross the road. A comparative study is conducted between three different data-driven sequential models. Each model is trained on the JAAD dataset and different extracted features from the visual perception module. The proposed GRU model obtained an 86\% average f1-score, anticipating the pedestrian's intention two seconds in advance when the pedestrian is standing, and three seconds in advance when the pedestrian is walking to the crossing area. To control the maneuver of the vehicle, longitudinal velocity and lateral controllers are implemented to control the motion of the vehicle while avoid collision with the pedestrian based on the intention prediction. Finally, this work is verified on a 1:4 scaled real vehicle to ensure the applicability of implementing this work in real hardware.
doi_str_mv 10.1109/TITS.2024.3491972
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2024_3491972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10756506</ieee_id><sourcerecordid>10_1109_TITS_2024_3491972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-7a2575ba910b05fbb25a8e60149dc7d6c59b886bbb25e7c38f88b2ce6e94c93e3</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOKc_QPAhf6AzaZs2eRxz6mBjw01fS5LeaqRLRpIO_Pe2bg8-3cO951wOH0L3lEwoJeJxt9htJylJ80mWCyrK9AKNKGM8IYQWl4NO80QQRq7RTQjf_TZnlI7Q_gmO0LrDHmzErsESr1zdtdLjt_U2mVupWqjxBmoI0Rtp8cLG3mqcxRsPtdF_cur1l4mgY-cBN87j6UfAK2mhO4I39hPPnI3etbfoqpFtgLvzHKP35_lu9pos1y-L2XSZaJrzmJQyZSVTUlCiCGuUSpnkUPSdRa3LutBMKM4LNRyg1BlvOFephgJErkUG2RjR01_tXQgemurgzV76n4qSauBVDbyqgVd15tVnHk4ZAwD__CUrGCmyX6y5aQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of a Modular ROS-Enabled Pedestrian Intention Prediction Architecture for AVs Maneuvering Control</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Manzour, Mohamed A. ; Elias, Catherine M. ; Morgan, Elsayed I. ; Shehata, Omar M.</creator><creatorcontrib>Manzour, Mohamed A. ; Elias, Catherine M. ; Morgan, Elsayed I. ; Shehata, Omar M.</creatorcontrib><description>In this work, the problem of predicting a pedestrian's intention to cross the road is addressed using visual data from a camera. The proposed ROS-based modular architecture consists of four modules: Visual-Perception, Intention Prediction, and Planning and Control Modules. The Visual Perception module is divided into three sub-modules. The pedestrian detection is responsible for detecting the pedestrian and analyzing his motion and looking states. The lane detection is responsible for analyzing the structured environment which helps in the road state classifiers. The third sub-module aims to extract some curvilinear localization states that are essential for the vehicle's motion planning and control. The intention prediction module captures the pedestrian's intention to cross the road. A comparative study is conducted between three different data-driven sequential models. Each model is trained on the JAAD dataset and different extracted features from the visual perception module. The proposed GRU model obtained an &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;86\%&lt;/tex-math&gt; &lt;/inline-formula&gt; average f1-score, anticipating the pedestrian's intention two seconds in advance when the pedestrian is standing, and three seconds in advance when the pedestrian is walking to the crossing area. To control the maneuver of the vehicle, longitudinal velocity and lateral controllers are implemented to control the motion of the vehicle while avoid collision with the pedestrian based on the intention prediction. Finally, this work is verified on a 1:4 scaled real vehicle to ensure the applicability of implementing this work in real hardware.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3491972</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Hardware ; intention prediction ; Mechatronics ; pedestrian ; Pedestrians ; Planning ; Predictive models ; Roads ; ROS-architecture ; Trajectory ; vehicle control ; Vehicles ; Visual perception ; Visualization</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-11, p.1-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>elsayed.morgan@guc.edu.eg ; mohamed.manzour@ieee.org ; catherine.elias@guc.edu.eg ; omar.shehata@ieee.org</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10756506$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Manzour, Mohamed A.</creatorcontrib><creatorcontrib>Elias, Catherine M.</creatorcontrib><creatorcontrib>Morgan, Elsayed I.</creatorcontrib><creatorcontrib>Shehata, Omar M.</creatorcontrib><title>Development of a Modular ROS-Enabled Pedestrian Intention Prediction Architecture for AVs Maneuvering Control</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>In this work, the problem of predicting a pedestrian's intention to cross the road is addressed using visual data from a camera. The proposed ROS-based modular architecture consists of four modules: Visual-Perception, Intention Prediction, and Planning and Control Modules. The Visual Perception module is divided into three sub-modules. The pedestrian detection is responsible for detecting the pedestrian and analyzing his motion and looking states. The lane detection is responsible for analyzing the structured environment which helps in the road state classifiers. The third sub-module aims to extract some curvilinear localization states that are essential for the vehicle's motion planning and control. The intention prediction module captures the pedestrian's intention to cross the road. A comparative study is conducted between three different data-driven sequential models. Each model is trained on the JAAD dataset and different extracted features from the visual perception module. The proposed GRU model obtained an &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;86\%&lt;/tex-math&gt; &lt;/inline-formula&gt; average f1-score, anticipating the pedestrian's intention two seconds in advance when the pedestrian is standing, and three seconds in advance when the pedestrian is walking to the crossing area. To control the maneuver of the vehicle, longitudinal velocity and lateral controllers are implemented to control the motion of the vehicle while avoid collision with the pedestrian based on the intention prediction. Finally, this work is verified on a 1:4 scaled real vehicle to ensure the applicability of implementing this work in real hardware.</description><subject>Hardware</subject><subject>intention prediction</subject><subject>Mechatronics</subject><subject>pedestrian</subject><subject>Pedestrians</subject><subject>Planning</subject><subject>Predictive models</subject><subject>Roads</subject><subject>ROS-architecture</subject><subject>Trajectory</subject><subject>vehicle control</subject><subject>Vehicles</subject><subject>Visual perception</subject><subject>Visualization</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAUhYMoOKc_QPAhf6AzaZs2eRxz6mBjw01fS5LeaqRLRpIO_Pe2bg8-3cO951wOH0L3lEwoJeJxt9htJylJ80mWCyrK9AKNKGM8IYQWl4NO80QQRq7RTQjf_TZnlI7Q_gmO0LrDHmzErsESr1zdtdLjt_U2mVupWqjxBmoI0Rtp8cLG3mqcxRsPtdF_cur1l4mgY-cBN87j6UfAK2mhO4I39hPPnI3etbfoqpFtgLvzHKP35_lu9pos1y-L2XSZaJrzmJQyZSVTUlCiCGuUSpnkUPSdRa3LutBMKM4LNRyg1BlvOFephgJErkUG2RjR01_tXQgemurgzV76n4qSauBVDbyqgVd15tVnHk4ZAwD__CUrGCmyX6y5aQI</recordid><startdate>20241118</startdate><enddate>20241118</enddate><creator>Manzour, Mohamed A.</creator><creator>Elias, Catherine M.</creator><creator>Morgan, Elsayed I.</creator><creator>Shehata, Omar M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/elsayed.morgan@guc.edu.eg</orcidid><orcidid>https://orcid.org/mohamed.manzour@ieee.org</orcidid><orcidid>https://orcid.org/catherine.elias@guc.edu.eg</orcidid><orcidid>https://orcid.org/omar.shehata@ieee.org</orcidid></search><sort><creationdate>20241118</creationdate><title>Development of a Modular ROS-Enabled Pedestrian Intention Prediction Architecture for AVs Maneuvering Control</title><author>Manzour, Mohamed A. ; Elias, Catherine M. ; Morgan, Elsayed I. ; Shehata, Omar M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-7a2575ba910b05fbb25a8e60149dc7d6c59b886bbb25e7c38f88b2ce6e94c93e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Hardware</topic><topic>intention prediction</topic><topic>Mechatronics</topic><topic>pedestrian</topic><topic>Pedestrians</topic><topic>Planning</topic><topic>Predictive models</topic><topic>Roads</topic><topic>ROS-architecture</topic><topic>Trajectory</topic><topic>vehicle control</topic><topic>Vehicles</topic><topic>Visual perception</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manzour, Mohamed A.</creatorcontrib><creatorcontrib>Elias, Catherine M.</creatorcontrib><creatorcontrib>Morgan, Elsayed I.</creatorcontrib><creatorcontrib>Shehata, Omar M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manzour, Mohamed A.</au><au>Elias, Catherine M.</au><au>Morgan, Elsayed I.</au><au>Shehata, Omar M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Modular ROS-Enabled Pedestrian Intention Prediction Architecture for AVs Maneuvering Control</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-11-18</date><risdate>2024</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>In this work, the problem of predicting a pedestrian's intention to cross the road is addressed using visual data from a camera. The proposed ROS-based modular architecture consists of four modules: Visual-Perception, Intention Prediction, and Planning and Control Modules. The Visual Perception module is divided into three sub-modules. The pedestrian detection is responsible for detecting the pedestrian and analyzing his motion and looking states. The lane detection is responsible for analyzing the structured environment which helps in the road state classifiers. The third sub-module aims to extract some curvilinear localization states that are essential for the vehicle's motion planning and control. The intention prediction module captures the pedestrian's intention to cross the road. A comparative study is conducted between three different data-driven sequential models. Each model is trained on the JAAD dataset and different extracted features from the visual perception module. The proposed GRU model obtained an &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;86\%&lt;/tex-math&gt; &lt;/inline-formula&gt; average f1-score, anticipating the pedestrian's intention two seconds in advance when the pedestrian is standing, and three seconds in advance when the pedestrian is walking to the crossing area. To control the maneuver of the vehicle, longitudinal velocity and lateral controllers are implemented to control the motion of the vehicle while avoid collision with the pedestrian based on the intention prediction. Finally, this work is verified on a 1:4 scaled real vehicle to ensure the applicability of implementing this work in real hardware.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3491972</doi><tpages>12</tpages><orcidid>https://orcid.org/elsayed.morgan@guc.edu.eg</orcidid><orcidid>https://orcid.org/mohamed.manzour@ieee.org</orcidid><orcidid>https://orcid.org/catherine.elias@guc.edu.eg</orcidid><orcidid>https://orcid.org/omar.shehata@ieee.org</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-11, p.1-12
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2024_3491972
source IEEE Electronic Library (IEL) Journals
subjects Hardware
intention prediction
Mechatronics
pedestrian
Pedestrians
Planning
Predictive models
Roads
ROS-architecture
Trajectory
vehicle control
Vehicles
Visual perception
Visualization
title Development of a Modular ROS-Enabled Pedestrian Intention Prediction Architecture for AVs Maneuvering Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Modular%20ROS-Enabled%20Pedestrian%20Intention%20Prediction%20Architecture%20for%20AVs%20Maneuvering%20Control&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Manzour,%20Mohamed%20A.&rft.date=2024-11-18&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3491972&rft_dat=%3Ccrossref_ieee_%3E10_1109_TITS_2024_3491972%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c148t-7a2575ba910b05fbb25a8e60149dc7d6c59b886bbb25e7c38f88b2ce6e94c93e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10756506&rfr_iscdi=true